Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Particle dynamics in corrugated rectangular billiard

https://doi.org/10.17586/2220-8054-2015-6-2-262-267

Abstract

The particle dynamics in one side corrugated rectangular billiard system is investigated with the help of numerical analysis. The dependence of chaotic behavior in particle dynamics on the corrugation height h is shown. The focusing mechanism of the corrugated billiard is investigated by analyzing the dependence of the total path on particle incident angle.

About the Authors

T. Akhmadjanov
National University of Uzbekistan
Uzbekistan

Faculty of Physics, Department of Optics and laser physics

Tashkent



E. Rakhimov
National University of Uzbekistan
Uzbekistan

Faculty of Physics, Department of Optics and laser physics

Tashkent



D. Otajanov
National University of Uzbekistan
Uzbekistan

Faculty of Physics, Department of Optics and laser physics

Tashkent



References

1. Birkhoff G.D. Dynamical Systems. Amer. Math. Soc. Colloquium Publ. 9. Providence: American Mathematical Society, 1927.

2. Sinai Y.G. Dynamical Systems with Elastic Reflections. Ergodic Properties of Dispersing Billiards. Russ. Math. Surveys, 25, P. 137 (1970).

3. Abdullaev S.S. and Zaslavskii G.M. Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous media. Sov. Phys. Usp., 34 (8), P. 645 (1991).

4. G.M. Zaslavsky and S. S. Abdullaev. Chaotic transmission of waves and ‘cooling’ of signals. CHAOS, 7 (1) (1997).

5. Stoeckmann H.J. Quantum Chaos – An Introduction. University Press, Cambridge, UK, 1999, 384 p.

6. Nakamura K. and Harayama T. Quantum chaos and quantum dots. Oxford University Press, Oxford, UK. 2004, 216 p.

7. Loskutov A.Yu., Ryabov A.B. and Akinshin L.G. Properties of some chaotic billiards with time-dependent boundaries. J. Phys. A., 33, P. 7973 (2000).

8. Loskutov A.Yu. and Ryabov A.B. Particle dynamics in time-dependent stadium-like billiards. J. Stat. Phys., 108 (5–6), P. 995 (2002).

9. Loskutov A.Yu. Dynamical chaos: systems of classical mechanics. Phys. Usp., 50 (9), P. 939 (2007).

10. Ryabov A.B. and Loskutov A.Yu. Time-dependent focusing billiards and macroscopic realization of Maxwell’s Demon. J. Phys. A., 43, P. 125104 (2010).

11. Loskutov A.Yu., Ryabov A. and Leonel E.D. Separation of particles in time-dependent focusing billiards. Physica A, 389 (23), P. 5408 (2010).

12. Loskutov A.Yu., et al. Billiards with time-dependent boundaries and some their properties. Nonlinear dynamics, 6 (3), P. 573 (2010).

13. Livorati A.L.P., Loskutov A.Yu. and Leonel E.D. A peculiar Maxwell’s Demon observed in a time-dependent stadium-like billiard. J. Phys. A, 391 (20), P. 4756 (2012).

14. Carvalho R.E., de Souza F.C., and Leonel E.D. Fermi acceleration on the annular billiard: a simplified version. J. Phys. A, 39 (14), P. 3561 (2006).

15. Batisti´c B. and Robnik M. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards. J. Phys. A, 44, P. 365101 (2011).

16. Oliveira D.F.M. and Robnik M. Scaling invariance in a time dependent elliptical billiard. Int. J. of Bifurcation and Chaos, 22, P. 1250207 (2012).

17. Oliveira D.F.M. and P¨oschel T. Competition between unlimited and limited energy growth in a two-dimensional time-dependent billiard. Phys. Lett. A, 337, P. 2052 (2013).

18. Batisti´c B. Fermi acceleration in chaotic shape-preserving billiards. Phys. Rev. E, 89, P. 022912 (2014).


Review

For citations:


Akhmadjanov T., Rakhimov E., Otajanov D. Particle dynamics in corrugated rectangular billiard. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(2):262-267. https://doi.org/10.17586/2220-8054-2015-6-2-262-267

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)