Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Electronic properties of MoS2 monolayer and related structures

Abstract

The present review provides an overview of the transition metal dichalcogenides discovered newly at the level of two dimensions. A special emphasis is given to the electronic structure of semiconducting representatives of this family, which can depend on many factors like thickness, environment, mechanical strain and structural imperfections of the layers. Both calculations and experimental data available to date on example of MoS2 compound evidence that, semiconducting dichalcogenide layers could become successful counterparts of graphene and nanosilicon as the materials of flexible nanoelectronics. However, current technologies for the fabrication of single mono- and multilayers of transition metal dichalcogenides still do not offer a large-scale and cost-effective product with the tuned quality to reveal all abilities predicted for these nanostructures.

About the Authors

A. N. Enyashin
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



G. Е. Seifert
Physical Chemistry, Dresden University of Technology
Germany

Dresden



References

1. Physics and Chemistry of Materials with Layered Structures, 1–8, Series Eds.: F. L´evy, Springer Netherlands, (1976–1986).

2. Yang J.F., Parakash B., Hardell J., Fang Q.F. Tribological properties of transition metal di-chalcogenide based lubricant coatings. Frontiers of Materials Science, 6 (2), P. 116–127 (2012).

3. Wilson J.A., Yoffe A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18 (73), P. 193–335 (1969).

4. Yoffe A.D. Layer compounds. Annual Review of Materials Science, 3 (73), P. 147–170 (1973).

5. Opalovskii A.A., Fedorov V.E. Molybdenum chalcogenides. Russian Chemical Reviews, 35 (3), P. 186–204 (1966).

6. Novoselov K.S, Jiang D., et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, P. 10451–10453 (2005).

7. Radisavljevic B., Radenovic A., et al. Single-layer MoS2 transistors. Nature Nanotechnology, 6, P. 147–150 (2011).

8. Ghatak S., Nath Pal A., Ghosh A. Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano, 5 (10), P. 7707–7712 (2011).

9. Radisavljevic B., Whitwick M.B., Kis A. Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 5 (12), P. 9934–9938 (2011).

10. Lagrenaudie J. Comparisondes composes de la famille de MoS2 (structure et proprietes optiques et electriques). Journal de Physique et le Radium, 15, P. 299 (1954).

11. Fivaz R., Mooser E. Mobility of Charge Carriers in Semiconducting Layer Structures. Physical Review, 163 (3), P. 743–755 (1967).

12. Sp¨ah R., Elrod U., et al. pn junctions in tungsten diselenide. Applied Physics Letters, 43 (1), P. 79–81 (1983).

13. Hultgren R. Equivalent Chemical Bonds Formed by s, p, and d Eigenfunctions. Physical Review, 40, P. 891– 907 (1932).

14. Kimball G.E. Directed Valence. Journal of Chemical Physics, 8, P. 188–198 (1940).

15. Mattheiss L.F. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B, 8 (8), P. 3719–3740 (1973).

16. Bromley R.A. A semi-empirical tight-binding calculation of the band structure of MoS2. Physics Letters A, 33, P. 242–243 (1970).

17. Li T., Galli G. Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 44, P. 16192–16196 (2007).

18. Leb`egue S., O. Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Physical Review B, 79 (11), P. 115409 (2009).

19. Mak K.F., Lee C., et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105 (13), P. 136805 (2010).

20. Splendiani A., Sun L., et al. Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10 (4), P. 1271– 1275 (2010).

21. Komsa H.-P., Krasheninnikov A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Physical Review B, 86 (24), P. 241201 (2012).

22. Kuc A., Zibouche N., Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B, 83, P. 245213 (2011).

23. Bertolazzi S., Brivio J., Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 5, P. 9703–9709 (2011).

24. Scalise E., Houssa M., et al. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 5 (1), P. 43–48 (2012).

25. Li W., Chen J.F., He Q., Wang. T. Electronic and elastic properties of MoS2. Physica B, 405, P. 2498–2502 (2010).

26. Li T. Ideal strength and phonon instability in single-layer MoS2. Physical Review B, 85 (23), P. 235407 (2012).

27. Shi H., Pan H., Zhang Y.-W., Yakobson B.I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Physical Review B, 87 (15), P. 155304 (2013).

28. Ghorbani-Asl M., Borini S., Kuc A., Heine T. Strain-dependent modulation of conductivity in single layer transition-metal dichalcogenides. Physical Review B, 87, P. 235434 (2013).

29. Seifert G., Terrones H., et al. Structure and electronic properties of MoS2 nanotubes. Physical Review Letters, 85 (1), P. 146–149 (2000).

30. Teich D., Lorenz D., et al. Structural and electronic Properties of helical TiS2 Nanotubes Studied with Objective Molecular Dynamics. The Journal of Physical Chemistry C, 115, P. 6392–6396 (2011).

31. Enyashin A.N., Popov I., Seifert G. Stability and electronic properties of rhenium sulfide nanotubes. Physica status solidi (b), 246 (1), P. 114–118 (2009).

32. Scheffer L., Rosentzveig R., et al. Scanning tunneling microscopy study of WS2 nanotubes. Physical Chemistry Chemical Physics, 4, P. 2095–2098 (2002).

33. Kaplan-Ashiri I., Cohen S.R., et al. Mechanical behavior of individual WS2 nanotubes. Journal of Materials Research, 19 (2), P. 454–459 (2004).

34. Brivio J., Alexander D.T.L., Kis A. Ripples and Layers in Ultrathin MoS2 Membranes. Nano Letters, 11 (12), P. 5148–5153 (2011).

35. Lorenz T., Joswig J.-O., Seifert G. Layered Nanostructures — Electronic and Mechanical Properties. MRS Proceedings, 1549 (2013).

36. Podzorov V., Gershenson M.E., et al. High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 84 (17), P. 3301–3303 (2004).

37. Ayari A., Cobas E., Ogundadegbe O., Fuhrere M.S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics, 101, P. 014507 (2007).

38. Kalikhman V.L., Umanskii Ya.S. Transition-metal chalcogenides with layer structures. Soviet Physics Uspekhi, 15 (6), P. 728–741 (1973).

39. Kaasbjerg K., Thygesen K.S., Jacobsen K.W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Physical Review B, 85 (11), P. 115317 (2012).

40. Rouschias G. Recent advances in the chemistry of rhenium. Chemical Reviews, 74 (5), P. 531–566 (1974).

41. Ramakrishna Matte H.S.S., Gomathi A., et al. MoS2 and WS2 Analogues of Graphene. Angewandte Chemie International Edition, 49 (24), P. 4059–4062 (2010).

42. Coleman J.N., Lotya M., et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331 (6017), P. 568–571 (2011).

43. Lauritsen J.V., Kibsgaard J., et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotechnology, 2 (1), P. 53–58 (2007).

44. Kim D., Sun D., et al. Toward the Growth of an Aligned Single-Layer MoS2 Film. Langmuir, 27 (18), P. 11650–11653 (2011).

45. Zhan Y., Liu Z., et al. Large-Area Vapor-Phase Growth Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small, 8 (7), P. 966–971 (2012).

46. Lee Y.H., Zhang X.Q., et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 24 (17), P. 2320–2325 (2012).

47. Liu K.K., Zhang W., et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 12 (3), P. 1538–1544 (2012).

48. Komsa H.P., Kotakoski J., et al. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Physical Review Letters, 109, P. 035503 (2012).

49. Komsa H.P., Kurash S., et al. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Physical Review B, 88, P. 035301 (2013).

50. Zhou W., Zou X., et al. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 13, P. 2615–2622 (2013).

51. Van der Zande A., Huang P.Y., et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 12, P. 554–561 (2013).

52. Enyashin A.N., Bar-Sadan M., Houben L., Seifert G. Line Defects in Molybdenum Disulfide Layers. The Journal of Physical Chemistry C, 117, P. 10842–10848 (2013).

53. Bollinger M.V., Lauritsen J.V., et al. One-Dimensional Metallic Edge States in MoS2. Physical Review Letters, 87, P. 196803 (2001).

54. Erdogan E., Popov I., Enyashin A.N., Seifert G. Transport properties of MoS2 nanoribbons: edge priority. European Physical Journal B, 85 (1), P. 33 (2001).

55. Najmaei S., Liu Z., et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 12, P. 754–759 (2013).

56. Yong K.S., Otalvaro D.M., et al. Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Physical Review B, 77, P. 205429 (2008).

57. Ghorbani-Asl M., Enyashin A.N., et al. Defect-induced conductivity anisotropy in MoS2 monolayers. Physical Review B, 88, P. 245440 (2013).

58. Deepak F.L., Popovitz-Biro R., et al. Fullerene-like Mo(W)1−xRexS2 Nanoparticles. Chemistry — An Asian Journal, 3, P. 1568–1574 (2008).

59. Yadgarov L., Stroppa D.G., et al. Investigation of Rhenium-Doped MoS2 Nanoparticles with Fullerene-Like Structure. Zeitschrift f¨ur Anorganische und Allgemeine Chemie, 638 (15), P. 2610–2616 (2012).

60. Enyashin A.N., Yadgarov L., et al. New Route for Stabilization of 1T-WS2 and MoS2 Phases. The Journal of Physical Chemistry C, 115, P. 24586–24591 (2011).

61. Dolui K., Rungger I., Pemmaraju C.D., Sanvito S. Possible doping strategies for MoS2 monolayers: An ab initio study. Physical Review B, 88, P. 075420 (2013).

62. Popov I., Seifert G., Tomanek D. Designing Electrical Contacts to MoS2 Monolayers: A Computational Study. Physical Review Letters, 108, P. 156802 (2012).

63. Das S., Chen H.-Y., Penumatcha A.V., Appenzeller J. High Performance Multilayer MoS2 Transistors with Scandium Contacs. Nano Letters, 13, P. 100–105 (2013).

64. Dolui K., Rungger I., Sanvito S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Nano Letters, 13, P. 100–105 (2013).


Review

For citations:


Enyashin A.N., Seifert G.Е. Electronic properties of MoS2 monolayer and related structures. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):517-539.

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)