Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Resonance scattering across the superlattice barrier and the dimensional quantization

https://doi.org/10.17586/2220-8054-2016-7-5-816-834

Abstract

Carbon nano-cluster cathodes exhibit a low threshold electron emission, which is 2–3 orders lower than on metals and semiconductors. We confirm the effect by direct experiments with graphene structures. We are suggesting a model based on the interference electrons wave function in 3D-space charge region of carbon structure interface with vacuum. The low-threshold emission is explained, in frames of the model, by the resonance properties of the barrier formed on the interface. Also in the following topics: interpretation of recent experimental findings for saturation of the field emission; local spectral analysis of multidimensional periodic lattices: dispersion via DN-map; examples of iso-energetic surfaces associated with solvable models of periodic lattice; Lagrangian version of the operator extension algorithm; solvable models of selected one-body spectral problems; quantum dot attached to the node of a quantum graph; a solvable model of a discrete lattice and spectral structure of a 1D superlattice via analytic perturbation procedure.

About the Authors

B. Pavlov
New Zealand Institute of Advanced Studies
New Zealand

Auckland



A. Yafyasov
Dept. of Solid State Electronics, St. Petersburg State University
Russian Federation

St. Petersburg



References

1. Fursey G.N. Field emission in vacuum microelectronics. Kluwer Academic/Plenum Publishers (now Springer), New York, 2005.

2. Fursey G., Konorov P., Pavlov B. and Adil Yafyasov. Dimensional Quantization and the Resonance Concept of the Low-Threshold Field Emission, Electronics, 2015, 4, P. 1101–1108.

3. Yafyasov A., Bogevolnov V., Fursey G., Pavlov B., Polyakov M., Ibragimov A. Low-threshold field emission from carbon nano-clusters. Ultramicroscopy, 2011, 111, P. 409–414.

4. Bonard J-M., St¨ ockli T., Majer F., W. de Heer, Chtelain A., Salvetat J-P., Forro L. Field-emission-Induced luminiscence from Carbon Nanotubes. Phys. Rev. Letters, 81, 7–17 August 1998, P. 1441–1444.

5. Modinos A., Xanthakis J.P. Electron emission from amorphous carbon nitride film. Applied Physics Letters, Sept. 1998, 73,(13), P. 28.

6. Forbes G., Xanthakis J.P. Field penetration into amorphous-carbon films: consequences for field-induced electron emission. Surf. Interface Anal.,2007, 39, P. 139–145.

7. Fursey G., Polyakov M., Pavlov B., Yafyasov A., Bogevolnov V. Exceptionally low Threshold of Field Emission from carbon nano clusters. Extended abstract. 24 International Vacuum Nanoelectronics conference. Bergishe Universitat, Wuppertal, Germany, 18–22 July 2011.

8. Flugge S. Practical Quantum Mechanics I, Ch.2. Springer Verlag, Heidelberg, new York, 1974, xvi, 331 p.

9. Datta S., Das Sarma B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56(7), P. 665–667.

10. Shelykh I.A., Galki N.G.n, Bagraev N.T. Quantum splitter controlled by Rashba spin-orbit coupling. Phys. Rev.B, 2005, 72, P. 235316.

11. Harmer M., Pavlov B., Yafyasov A. Boundary condition at the junction. Journal of computational electronics, 2007, 6, P. 153–157.

12. Pavlov B. The theory of extensions and explicitly solvable models. (In Russian) Uspekhi Mat. Nauk, 1987, 42, P. 99–131.

13. Pavlov B. A solvable model for scattering on a junction and a modified analytic perturbation procedure. Operator theory: Advances and Applications, 2009, 197, P. 281–335. Birkh¨ auser, Basel/Switzerland.

14. Bagraev N.T. Metastable surface defects in p-type Ga As. Materials Science Forum vols, 1994, 143-147, P. 543–548.

15. Davies J.H. The Physics of Low-Dimensional Semiconductor. An Introduction, Cambridge University. Press: Cambridge, UK, 1998, P. 438.

16. Fursey G.N., Egorov N.V., Zakirov I.I., et al. Peculiarities of the total energy disribution of the field emission electrons from graphene-like structures: Distribution on full energy. Radiotechnika i electronika., 2015, 6,11, P. 1–4. (in press) (In Russian).

17. Karpeshina Yu.E. Spectrum and Eigenfunctions of the Schr¨ odinger operator in a three-dimensional space with periodic point potential of two-dimensional lattice type. In Russian TMF, 1983, 57(3), P. 414–423.

18. von Neumann J. Mathematical foundations of quantum mechanics. Twelfth printing. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1996.

19. Fermi E. Sul motto del neutroni nelle sostanze idrigenante. Ricerca Sci., 1936, P. 13–52.

20. Berezin F.A.,Faddeev L.D. A remark on the Schr¨ odinger equation with with a singular potential. Soviet Math. Doklady, 1961, 2, P. 372–376.

21. Albeverio S. and Kurasov P. Singular Perturbations of Differential Operators. Solvable Schr¨odinger Type Operators. London Mathematical Society Lecture Note Series vol 271, Cambridge University Press, 2000, xiv+429 p.

22. Bagraev N., Mikhailova A., Pavlov B., Prokhorov L., Yafyasov A. Parametric regimes of a resonance quantum switch. Phys. Rev. B, 2005, 71, P. 165308.

23. Pavlov B., Antoniou I. Jump-start in the analytic perturbation procedure for the Friedrichs model. J. Phys. A (Math. Gen), 2005, 38, P. 4811–4823.

24. Pavlov B. A star-graph model via operator extension. Mathematical Proceedings of the Cambridge Philosophical Society, 2007, 142(02), P. 365–384.

25. Krasnoselskij M.A. On selfadjoint extensions of Hermitian Operators. (in Russian) Ukrainskij Mat.Journal, 1949, 1(21), P. 21–38.

26. S.P. Novikov private communication 2012, MIAN.

27. Prigogine I. Irreversibility as a symmetry-breacking process. Nature, 1976, 246, P. 9.

28. Martin G., Pavlov B., Yafyasov A. Resonance one-body scattering on a junction. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1(1), P. 108–147.

29. Pavlov B. S-Matrix and Dirichlet-to-Neumann Operators. Scattering and Semigroup Theory. In: Scattering, ed. R.Pike, P. Sabatier, Academic Press, Harcourt Science and Tech. Company. 2000, P. 1678–1688


Review

For citations:


Pavlov B., Yafyasov A. Resonance scattering across the superlattice barrier and the dimensional quantization. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(5):816-834. https://doi.org/10.17586/2220-8054-2016-7-5-816-834

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)