Sensor properties of carboxyl-modifies carbon nanotubes
Abstract
This paper studies the sensor activity of carboxyl-modified single-walled carbon nanotubes (zig-zag, armchair type) to atoms and ions of alkali metals Na, Li, K. The mechanism of the carboxyl binding to the open border of the semi-infinite carbon nanotube is investigated. Calculations of the interaction processes between the sensor and sample alkali atoms and alkaline ions are performed. The process of scanning a sample surface site with atoms of metals under consideration is modeled and the functional carboxyl group chemical activity is defined. The research is performed by the MNDO method within the framework of the molecular cluster model and DFT method.
Keywords
About the Authors
N. P. PolikarpovaRussian Federation
Volgograd
I. V. Zaporotskova
Russian Federation
Volgograd
D. E. Vilkeeva
Russian Federation
Volgograd
D. I. Polikarpov
Russian Federation
Volgograd
References
1. R. Saito, M.S. Dresselhaus, G. Dresselhaus. Physical properties of carbon nanotube, Imperial College Press, London UK, 251 p. (1999).
2. P. J. F. Harris, arbon nanotubes and related structures. New Materials for the Twenty-first Century, Cambridge University Press, New York USA, 336 p. (1999).
3. I.V. Zaporotskova. Carbon and non-carbon nanomaterials and composite structures on its base: morphology and electron properties, Volgograd Russia, Volgograd University Press, 456 p. (2009).
4. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon nanotubes: synthesis, structure, properties, and application, Springer-Verlag, Berlin Germany, 464 p. (2000).
5. P.N. D’yachkov. Electron properties and application of carbon nanotube, Moscow Russia, BINOM, 488 p. (2010).
6. S. Chopra, A. Pham, J. Gaillard, A. Parker, A.M. Rao. Carbon nanotube based resonant circuit sensor for ammonia. Appl. Phys.Lett. 80, P. 4632–4634 (2002).
7. S. Ghosh, A.K. Sood, N. Kumar. Carbon nanotube flow sensors Science, 299, P. 1042–1044 (2003).
8. A. V. Eletskiy. Sorption properties of carbon nanostructure. Uspehi Fizicheskih Nauk, 174, P. 1191–1231 (2004).
9. S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Carbon nanotubes fir electronic and electrochemical detection of biomolecules. Adv. Mater., 19, P. 3214–3228 (2007).
10. W.-D. Zhang, W.-H. Zhang. Carbon nanotubes as active components for gas sensors. Journal of Sensors (2009). doi:10.1155/2009/160698.16,2009.
11. S.S. Wong, E. Josevlevich, A.T. Wooley, C.L. Cheung, C.M. Lieber. Covalently functionalized nanotubes as nanometer sized probes in chemistry and biology. Nature. 394, P. 52 (1998).
12. H.-L. Hsu, J.-M. Jehng, Y. Sung, L.-C. Wang, S.-R. Yang. The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor. Materials Chemistry and Physics, 109(1), P. 148–155 (2008).
13. J. Maklin, T. Mustonen, K. Kordas, S. Saukko, G. Toth, J. Vahakangas. Nitric oxide gas sensors with functionalized carbon nanotubes. Physica Status Solidi B, 244(11), P. 4298–4302 (2007).
14. D. Fu, H. Lim, Y. Shi, et al. Differentiation of gas molecules using flexible and all-carbon nanotube devices. Journal of Physical Chemistry C, 112(3), P. 650–653 (2008).
15. I.V. Zaporotskova, N.P. Polikarpova, D.E. Vil’keeva, P.A. Zaporotskov. Carboxylated carbon nanotubes as an active components of sensor devices. Nanotechnics, 1(33), P. 46–52 (2013).
Review
For citations:
Polikarpova N.P., Zaporotskova I.V., Vilkeeva D.E., Polikarpov D.I. Sensor properties of carboxyl-modifies carbon nanotubes. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):101-106.