Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Diagnostic methods for silica-reinforced carbon nanotube-based nanocomposites

https://doi.org/10.17586/2220-8054-2016-7-1-180-184

Abstract

This paper presents results of the experimental studies of the properties of silica-based nanocomposites with filler in the form of carbon nanotubes by dielectric relaxation and positron annihilation spectroscopy. Based on these results, techniques for diagnosis and control of the investigated materials were proposed.

About the Authors

M. K. Eseev
Northern Arctic Federal University
Russian Federation

Arkhangelsk



A. A. Goshev
Northern Arctic Federal University
Russian Federation

Arkhangelsk



P. Horodek
Joint Institute for Nuclear Research; Institute of Nuclear Physics Polish Academy of Sciences
Russian Federation

Dubna, Moscow region; Krakow



S. N. Kapustin
Northern Arctic Federal University
Russian Federation

Arkhangelsk



A. G. Kobets
Joint Institute for Nuclear Research; Institute of Electrophysics and Radiation Technologies NAS of Ukraine
Russian Federation

Dubna, Moscow region; Kharkov



C. S. Osokin
Northern Arctic Federal University
Russian Federation

Arkhangelsk



References

1. Eletskii A.V. Carbon nanotubes. Physiks Uspekhi, 1997, 40(9), P. 899–924.

2. Eletskii A.V., Knizhnik A.A., Potapkin B.V., Kenny J.M. Electrical characteristics of carbon nanotube doped composites. Physiks Uspekhi, 2015, 58(3), P. 209–251.

3. Rakov E.G. Carbon nanotubes in new materials. Russian Chem. Rev., 2013, 82(1), P. 27–47.

4. Muradyan V.E., Sokolov E.A., Babenko S.D., Moravsky A.P. Microwave dielectric properties of composites modified by carbon nanostructures. Techn. Phys., 2010, 55(2), P. 242–246.

5. Usanov D.A., Skripal’ A.V., Romanov A.V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes. Techn. Phys., 2011, 56(1), P. 102–106.

6. Usanov D.A., Skripal’ A.V., Romanov A.V. Effect of annealing on the microwave characteristics of carbon nanotubes and the nanocomposite materials based on them. Techn. Phys., 2014, 59(6), P. 873–878.

7. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects of using carbonaceous nanoparticles in binders for polymer composites. Nanotechnologies in Russia, 2013 8(3-4), P. 163–185.

8. Sidorin A.A., Meshkov I., Ahmanova E., Eseev M., Kobets A., Lokhmatov V., Pavlov V., Rudakov A., Yakovenko S. The LEPTA facility for fundamental studies of positronium physics and positron spectroscopy. Mater. Sci. Forum, 2013, 733, P. 291–296.

9. Puska M.J., Nieminen R.M. Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys., 1994, 66, P. 841–899.

10. Krause-Rehberg R., Leipner S.H. Positron annihilation in semiconductors. Springer, Berlin, 1998.

11. Chen H.M. Awad S., Jean Y.C., Yang J., James Lee L. Positron annihilation studies in polymer nanocomposites. Application of Accelerators in Research and Industry, 2011, 1336, P. 444–447.


Review

For citations:


Eseev M.K., Goshev A.A., Horodek P., Kapustin S.N., Kobets A.G., Osokin C.S. Diagnostic methods for silica-reinforced carbon nanotube-based nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):180-184. https://doi.org/10.17586/2220-8054-2016-7-1-180-184

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)