Topological mechanochemistry of graphene
Abstract
The current paper describes the effects caused by uniaxial tension of a graphene molecule in the course of the mechanochemical reaction. Basing on the molecular theory of graphene, the effects are attributed to both mechanical loading and chemical modification of the edge atoms of the molecule. The mechanical behavior is shown to be not only highly anisotropic with respect to the direction of the load application, but greatly dependent on the chemical modification of the molecule edge atoms, thus revealing the topological character of the graphene deformation.
Keywords
About the Authors
E. F. ShekaRussian Federation
117302 Moscow, Miklukho-Maklay str. 6
V. A. Popova
Russian Federation
117302 Moscow, Miklukho-Maklay str. 6
N. A. Popova
Russian Federation
117302 Moscow, Miklukho-Maklay str. 6
References
1. G.M.J. Schmidt. Photodimerization in the solid state. Pure Appl. Chem., 27, P. 647–678 (1971).
2. A.W.K. de Jong. Uber die Konstitution der Truxill – und Truxinsauren und uber die Entwiklung des Sonnenlichtes auf die Zimtsauren und Zimisaure -Salze. Chem. Ber., 56B, P. 818–832 (1923).
3. R.B. Woodward, R. Hoffmann. The Conservation of Orbital Symmetry. Verlag Chemie in Weinheim, Bergstr (1970).
4. V. Enkelmann. Polydiacetilenes. Adv. Polym. Sci., 63, P. 91–121 (1984).
5. M. Hasegawa. Topochemical photopolymerization of diolefin crystals. Pure Appl. Chem., 58, P. 1179– 1188 (1986).
6. V.V. Boldyrev. Topochemistry and topochemical reactions. Reactivity of Solids, 8, P. 231–246 (1990).
7. L.R. MacGillivray, G.S. Papaefstathiou. Encyclopedia of Supramolecular Chemistry. DOI: 10.1081/EESMC 120012761 Marcel Dekker, 1316 (2004).
8. F. Guo, J. Marti-Rujas, Z. Pan, et al. Direct structural understanding of a topochemical solid state photopolymerization reaction. J. Phys. Chem. C, 112, P. 19793–19796 (2008).
9. E.F. Sheka, L.Kh. Shaymardanova. C60-based composites in view of topochemical reactions. J. Mat. Chem., 21, P. 17128–17146 (2011).
10. E.F. Sheka. Topochemistry of spatially extended sp2 nanocarbons: fullerenes, nanotubes, and graphene. In: Ashrafi A. R., Cataldo F., Iranmanesh A et al. (eds.) Topological Modelling of Nanostructures and Extended Systems. Carbon Materials: Chemistry and Physics, 7, Springer, Heidelberg, P. 137–148 (2013).
11. E.F. Sheka, N.A. Popova, V.A. Popova, E.A. Nikitina, L.Kh. Shaymardanova. A tricotage-like failure of nanographene. J. Mol. Mod., 17, P. 1121–1131 (2011).
12. E.F. Sheka, N.A. Popova, V.A. Popova, E.A. Nikitina, L.Kh. Shaymardanova. Structure-sensitive mechanism of nanographene failure. J. Exp. Theor. Phys. 112, P. 602–611 (2011).
13. N.A. Popova, E.F. Sheka. Mechanochemical reaction in graphane under uniaxial tension. J. Phys. Chem. C, 115, P. 23745–23754 (2011).
14. V.A. Popova, N.A. Popova, E.F. Sheka. Effect of chemical modification of edge atoms of graphene sheets on their strength. arXiv:1301.0944 [cond-mat.mtrl-sci] (2013).
15. A. Tobolski, H. Eyring. Mechanical properties of polymeric materials. J. Chem. Phys., 11, P. 125–134 (1943).
16. M.J.S. Dewar. MO theory as a practical tool for studying chemical reactivity. Fortschr. Chem. Forsch., 23, P. 1–63 (1971).
17. E.A. Nikitina, V.D. Khavryutchenko, E.F. Sheka, H. Barthel, J. Weis. Deformation of poly (dimethylsiloxane) oligomers under uniaxial tension. Quantum-chemical view. J. Phys. Chem. A, 103, P. 11355– 11365 (1999).
18. E.F. Sheka. Computational strategy for graphene: Insight from odd electrons correlation. Int. J. Quant. Chem., 112, P. 3076–3090 (2012).
19. V.D. Khavryutchenko, E.A. Nikitina, A.L. Malkin, et al. Mechanics of nanoobjects. Computational mechanochemistry. Phys. Low-Dim. Struct., 6, P. 65–84 (1995).
20. V.D. Khavryutchenko, A.V. Khavryutchenko. Jr. DYQUAMECH dynamical-quantum modelling in mechanochemistry. Software for personal computers, Institute of Surface Chemistry, Nat. Acad. Sci. of the Ukraine, Kiev (1993).
21. J.J.P. Stewart. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, P. 209–220 (1989).
22. C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima. Deriving carbon atomic chains from graphene. Phys. Rev. Lett., 102, P. 205501 (2009).
23. K. Tashiro, M. Kobayashi, H. Tadacoro. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer Journ 24, P. 899–916 (1992).
24. E.F. Sheka. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press, Taylor and Francis Group. Boca Raton (2011).
25. E.F. Sheka, V.A. Popova, N.A. Popova. Topological mechanochemistry of graphene. In: Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, ed. by Hotokka M. Braandas E.J., Maruani J. and Delgado-Barrio G. Progress in Theoretical Chemistry and Physics, Springer, Berlin, Heidelberg, 27, P. 285–301 (2013).
Review
For citations:
Sheka E.F., Popova V.A., Popova N.A. Topological mechanochemistry of graphene. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):134-141.