Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Field electron emission from a nickel-carbon nanocomposite

Abstract

The field-emission properties of nanocomposite films comprised of 10 – 20 nm-sized nickel particles immersed in a carbon matrix were investigated. The films were deposited onto silicon substrates by means of a metal-organic chemical vapor deposition (MOCVD) method. The composite’s structure was controlled via deposition process parameters. Experiments demonstrated that the composite films can efficiently emit electrons, yielding current densities of up to 1.5 mA/cm2 in electric fields below 5 V/µm. Yet, good emission properties were only shown in films with low effective thickness, when nickel grains did not form a solid layer, but left a part of the substrate area exposed to the action of the electric field. This phenomenon can be naturally explained in terms of the two-barrier emission model.

About the Authors

V. S. Protopopova
Saint Petersburg State Polytechnic University
Russian Federation

Saint Petersburg



M. V. Mishin
Saint Petersburg State Polytechnic University
Russian Federation

Saint Petersburg



A. V. Arkhipov
Saint Petersburg State Polytechnic University
Russian Federation

Saint Petersburg



S. I. Krel
Saint Petersburg State Polytechnic University
Russian Federation

Saint Petersburg



P. G. Gabdullin
Saint Petersburg State Polytechnic University
Russian Federation

Saint Petersburg



References

1. Okotrub A.V., Bulusheva L.G., et al. Field emission from products of nanodiamond annealing. Carbon, 42, P. 1099–1102 (2004).

2. Shpilman Z., Michaelson Sh., Kalish R., Hoffman A. Field emission measurements from carbon films of a predominant nano-crystalline diamond character grown by energetic species. Diamond and Related Materials, 15, P. 846–849 (2006).

3. Liu D., Benstetter G., Frammelsberger W. Nanoscale electron field emissions from the bare, hydrogenated, and graphitelike-layer-covered tetrahedral amorphous carbon films. J. Appl. Phys., 99, P. 044303 (2006).

4. ZhaoY., Zhang B., et al. Improved field emission properties from metal-coated diamond films. Diamond and Related Materials, 16, P. 650–653 (2007).

5. Orlanducci S., Fiori A., et al. Nanocristalline diamond films grown in nitrogen rich atmosphere: structural and field emission properties. J. Nanosci. Nanotechnol., 8, P. 3228–3234 (2008).

6. Panwar O.S., Rupesinghe N., Amaratunga G.A.J. Field emission from as grown and nitrogen incorporated tetrahedral amorphous carbon/silicon heterojunctions grown using a pulsed filtered cathodic vacuum arc technique. J. Vac. Sci. Technol. B, 26, P. 566–575 (2008).

7. Xu L., Wang C., et al. Effects of bonding structure from niobium carbide buffer layer on the field electric emission properties of a-C films. J. Appl. Phys., 105, P. 074318 (2009).

8. Uppireddi K., Weiner B.R., Morell G. Field emission stability and properties of simultaneously grown microcrystalline diamond and carbon nanostructure films. J. Vac. Sci. Technol. B, 28, P. 1202–1205 (2010).

9. Huang P.-C., Shih W.-C., Chen H.-C., Lin I-N. The induction of a graphite-like phase on diamond films by a Fe-coating/post-annealing process to improve their electron field emission properties. J. Appl. Phys., 109, P. 084309 (2011).

10. Masuzawa T., Sato Y., et al. Correlation between low threshold emission and C–N bond in nitrogen-doped diamond films. J. Vac. Sci. Technol. B, 29, P. 02B119 (2011).

11. Nose K., Fujita R., Kamiko M., Mitsuda Y. Electron field emission from undoped polycrystalline diamond particles synthesized by microwave-plasma chemical vapor deposition. J. Vac. Sci. Technol. B, 30, P. 011204 (2012).

12. Karabutov A.V., Frolov V.D., et al. Low-field electron emission of diamond/pyrocarbon composites. J. Vac. Sci. Technol. B, 19, P. 965–970 (2001).

13. Obraztsov A.N., Zakhidov Al.A. Low-field electron emission from nano-carbons. Diamond and Related Materials, 13, P. 1044–1049 (2004).

14. Xie W.G., Chen Jun, et al. Effect of hydrogen treatment on the field emission of amorphous carbon film. J. Appl. Phys., 101, P. 084315 (2007).

15. Filip L.D., Palumbo M., Carey J.D., Silva S.R.P. Two-step electron tunneling from confined electronic states in a nanoparticle. Phys. Rev. B, 79 (24), P. 245429 (2009).

16. Arkhipov A.V., Gabdullin P.G., et al. Field-induced electron emission from graphitic nano-island films at silicon substrates. Fullerenes, Nanotubes and Carbon Nanostructures, 20 (4–7), P. 468–472 (2012).

17. Arkhipov A.V., Gabdullin P.G., Mishin M.V. On possible structure of field-induced electron emission centers of nanoporous carbon. Fullerenes, Nanotubes and Carbon Nanostructures, 19 (1–2), P. 86–91 (2011).

18. Alexandrov S.E., Protopopova V.S. Chemical vapor deposition of Ni-C films from bis-(ethylcyclopentadienyl) nickel. Journal of Nanoscience and Nanotechnology, 11, P. 8259–8263 (2011).

19. Baylor L.R., Merkulov V.I., et al. Field emission from isolated individual vertically aligned carbon nanocones. J. Appl. Phys., 91 (7), P. 4602–4606 (2002).

20. Orlanducci S., Toschi F., et al. A viable and scalable route for the homogrowth of Si nanocones and Si/C nanostructures. Cryst. Growth Des., 12, P. 4473–4478 (2012).

21. Bondarenko V.B., Gabdullin P.G., et al. Emissivity of powders prepared from nanoporous carbon. Tech. Phys., 49, P. 1360–1363 (2004).

22. Liao L., Zhang W.F., et al. Investigation of the temperature dependence of the field emission of ZnO nanorods. Nanotechnology, 18, P. 225703 (2007).

23. Tordjman M., Bolker A., Saguy C., Kalish R. Temperature dependence of reversible switch-memory in electron field emission from ultrananocrystalline diamond. Appl. Phys. Lett., 101, P. 173116 (2012).

24. Arkhipov A.V., Gordeev S.K., et al. Nanodiamond composite as a material for cold electron emitters. J. Phys.: Conf. Ser., 100, P. 072047 (2008).


Review

For citations:


Protopopova V.S., Mishin M.V., Arkhipov A.V., Krel S.I., Gabdullin P.G. Field electron emission from a nickel-carbon nanocomposite. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(1):178-185.

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)