Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Periodic chain of disks in a magnetic field: bulk states and edge states

https://doi.org/10.17586/2220-8054-2015-6-5-637-643

Abstract

An explicitly solvable model for periodic chain of coupled disks in orthogonal magnetic field is considered. The spectrum for the Hamiltonian is compared with the spectrum for the corresponding chain of circles. These models are used for the comparison of the bulk and edge states. It is found that for some range of the magnetic field values the lowest band for the circles system lies below the spectrum for the corresponding disks system, i.e. the edge band is below and is separated from the lowest bulk band. 

About the Authors

E. N. Grishanov
Department of Mathematics and IT, Ogarev Mordovia State University
Russian Federation

Bolshevistskaya Str. 68, Saransk



D. A. Eremin
Department of Mathematics and IT, Ogarev Mordovia State University
Russian Federation

Bolshevistskaya Str. 68, Saransk



D. A. Ivanov
Department of Mathematics and IT, Ogarev Mordovia State University
Russian Federation

Bolshevistskaya Str. 68, Saransk



I. Yu. Popov
Department of Higher Mathematics, ITMO University
Russian Federation

Kroverkskiy pr. 49, St. Petersburg, 197101



P. I. Smirnov
Department of Higher Mathematics, ITMO University
Russian Federation

Kroverkskiy pr. 49, St. Petersburg, 197101



References

1. C. Hermosa, J.V. Alvarez, et al. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nature Comm., 2013, 4, P. 1709.

2. A. Medhi, V.B. Shenoy. Continuum theory of edge states of topological insulators: variational principle and boundary conditions. J. Phys.: Condens. Matter, 2012, 24 (35), P. 355001.

3. M.Z. Hasan, C.L. Kane. Topological insulators. Rev. Mod. Phys., 2010, 82 P. 3045-3067.

4. S. Mao, Y. Kuramoto, K.-I. Imura, A. Yamakage. Analytic theory of edge modes in topological insulators. J. Phys. Soc. Japan, 2010, 79, P. 124709.

5. J.J. Cha, K.J. Koski, Yi. Cui. Topological insulator nanostructures. Phys. Status Solidi RRL, 2013, 7 (1-2), P. 15–25.

6. N.I. Gerasimenko, B.S. Pavlov. Scattering problems on noncompact graphs. Theoret. Math. Phys., 1988, 74, P. 230–240

7. P. Exner, P. Seba. Free quantum motion on a branching graph. Rep. Math. Phys., 1989, 28, P. 7–26.

8. P. Exner, et al. (Eds.) Analysis on Graphs and Its Applications. Proc. Symp. Pure Math., (AMS, Providence, Rhode Island, 2008).

9. O. Post. Spectral Analysis on Graph-like Spaces. Springer, Berlin, 2010.

10. I.S. Lobanov, I.Yu. Popov. Scattering by zigzag-armchair nanotube junction. Nanosystems: Physics, Chemistry, Mathematics, 2012, 3 (2), P. 6–28.

11. I.Yu. Popov, A.N. Skorynina, I.V. Blinova. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, P. 033504/1–20.

12. V. Kostrykin, R. Schrader. Kirchhoff’s rule for quantum wires. J. Physics A: Math. Gen., 1999, 32, P. 595–630.

13. K. Pankrashkin. On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon. Nanosystems: Phys., Chem., Math., 2015, 6 (1), P. 46–56.

14. P. Duclos, P. Exner, O. Turek. On the spectrum of a bent chain graph. J. Phys. A: Math. Theor., 2008, 41, P. 415206.

15. I.Yu. Popov, P.I. Smirnov. Spectral problem for branching chain quantum graph. Phys. Lett. A, 2013, 377, P. 439–442.

16. I.S. Lobanov, E.S. Trifanova. Direct and inverse problems in the model of quantum graphs. Nanosystems: Phys., Chem., Math., 2012, 3 (5), P. 6–32.

17. I.S. Lobanov, A.I. Trifanov, E.S. Trifanova. Genetic algorithm for constructing graphene nanoribbon with given electronic transport properties. Nanosystems: Phys., Chem., Math., 2013, 4, P. 512–523.

18. D.A. Eremin, I.Yu. Popov. Quantum ring with wire: a model of two-particles problem. Nanosystems: Phys., Chem., Math., 2012, 2 (2), P. 6–32.

19. M.A. Kokoreva, V.A. Margulis, M.A. Pyataev. Electron transport in a two-terminal AharonovBohm ring with impurities. Physica E, 2011, 43, P. 1610.

20. B.S. Pavlov, I.Yu. Popov, V.A. Geyler, O.S. Pershenko. Possible construction of a quantum multiplexer. Europhys. Lett., 2000, 52, P. 196.

21. I.Yu. Popov. The resonator with narrow slit and the model based on the operator extensions theory. J.Math. Phys., 1992, 33 (11), P. 3794–3801.

22. I.Yu. Popov. Model of point-like window for electromagnetic Helmholtz resonator. Zeitschrift fur Analysis und ihre Anwendungen. 2013, 32 (2), P. 155–162.


Review

For citations:


Grishanov E.N., Eremin D.A., Ivanov D.A., Popov I.Yu., Smirnov P.I. Periodic chain of disks in a magnetic field: bulk states and edge states. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):637-643. https://doi.org/10.17586/2220-8054-2015-6-5-637-643

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)