Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Reactivity in combustion process for expanded graphites: influence of dimensional effect

https://doi.org/10.17586/2220-8054-2016-7-1-234-243

Abstract

Thermal stability in combustion reaction for natural graphite, graphene and several expanded graphite phases were studied; the kinetic parameters of the oxidation reaction were calculated for two samples. Natural graphite (crystalline particles 200 – 300 µm) has the maximum stability (E1 = 201 ± 2 kJ/mol, lg A1 = 7.1 ± 0.1), while multilayer graphene is the most reactive (E2 = 120 ± 1 kJ mol−1, lg A2 = 4.3 ± 0.10). The different sample grain sizes and their different structures result in different thermal stabilities: both in the reaction zones location (i.e. in the topochemical equation forms), and in the kinetic parameters’ values.

About the Authors

V. A. Logvinenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk 630090



V. G. Makotchenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk 630090



V. E. Fedorov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk 630090



References

1. Buffat Ph., Borel J.P. Size effect on the melting temperature of gold particles. Phys. Rev., 1976, A 13, P. 2287–2298.

2. Lai S.L., Carlsson J.R.A., Allen L.H. Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett., 1998, 72, P. 1098–1100.

3. Bulavchenko A.I., Demidova M.G., Podlipskaya T.Yu., Tatarchuk V.V., Druzhinina I.A. Alekseev A.V., Logvinenko V.A., Drebushchak V.A. Microemulstion synthesis of powders of water soluble energy saturated salts. Russ. J. Inorg. Chem., 2012, 57(6), P. 769–776.

4. Yusupov T.S., Shumskaya L.G., Burdukov A.P., Logvinenko V.A. Reactivity of coal of different stages of metamorphism in the processes of thermo-oxidative destruction. Chemistry for Sustainable Development, 2011, 19, P. 389–394.

5. Backreedy R., Jones J.M., Pourkashanian M., Williams A. A study of the reaction of oxygen with graphite : Model chemistry. Faraday Discuss., 2001, 119, P. 385–394.

6. Bews I.M., Hayhurst A.N., Richardson S.M, Taylor S.G. The order, Arrhenius parameters, and mechanism of the reaction between gaseous oxygen and solid carbon. Combust. Flame, 2001, 124, P. 231–245.

7. Jianga W., Nadeaub G., Zaghibb K., Kinoshitaa K. Thermal analysis of the oxidation of natural graphite – effect of particle size. Thermoch. Acta, 2000, 351, P. 85–93.

8. Makotchenko V.G., Grayfer E.D., Nazarov A.S., Kim S.-J., Fedorov V.E. The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon, 2011, 49(10), P. 3233–3241.

9. Hummers Jr.W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), P. 1339.

10. Rudorff W., Hofmann U. Uber Graphitsaltse. Z. Anorg. Allg. Chem. B, 1938, 238(1), P. 1–50.

11. Metrot A., Fisher J.E. Charge-transfer reactions during anodic oxidation of graphite in H2SO4. Synth. Met., 1981, 3, P. 201–207.

12. Avdeev V.V., Monyakina L.A., Nikolskaya I.V., Sorokina N.E., Semenenko K.N. The choice of oxidizers for graphite hydrogen sulfate chemical synthesis. Carbon, 1992, 30(6), P. 819–824.

13. Scherrer P. Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Mathematisch-Physikalische Klasse, 1918, 2, P. 98–100.

14. Netzsch Thermokinetics. http://www.netzsch-thermal-analysis.com/us/products-%20%20solutions/advanced-software/thermokinetics.html

15. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J. Therm. Anal. Calorim., 2012, 109, P. 1203–1214.

16. Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29, P. 1702–1706.

17. Friedman H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J. Polym. Sci., 1963, 6, P. 183–195.

18. Ozawa T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan, 1965, 38, P. 1881–1886.

19. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim. Acta, 1992, 203, P. 159– 165.

20. Flynn J.H., Wall L.A. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Stand., 1966, 70, P. 478–523.

21. Opfermann J., Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim. Acta, 1992, 203, P. 167–175.

22. Opfermann J.R., Kaisersberger E., Flammersheim H.J. Model-free analysis of thermo-analytical data - advantages and limitations. Thermochim. Acta, 2002, 391, P. 119–127.

23. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J. Therm. Anal. Calorim., 2006, 83, P. 45–51.

24. Simon P. Single-step kinetics approximation employing non-Arrhenius temperature functions. J. Therm. Anal. Calorim., 2005, 79, P. 703–708.

25. Simon P. The single-step approximation: attributes, strong and weak sides. J. Therm. Anal. Calorim., 2007, 88, P. 709–715.

26. Borchard H.J., Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J. Amer. Chem. Soc., 1957, 79, P. 41–46.

27. Vyazovkin S., Burnham A.K., Criado J.M., Luis A., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520, P. 1–19.

28. Vyazovkin S., Chrissafis K., Di Lorenzo M.L., Koga N., Pijolat M., Roduit B., Sbirrazzuoli N., Sun˜ol J.J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta, 2014, 590, P. 1–23.

29. Simon P., Thomas P., Dubaj T., Cibulkova Z., Peller A., Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J. Therm. Anal. Calorim., 2014, 115, P. 853–859.

30. Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J. Therm. Anal. Calorim., 2014, 117, P. 3–7.

31. Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim. Acta, 1999, 340-341, P. 293–299.

32. Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J. Therm. Anal. Calorim., 2000, 60, P. 9–15.

33. Logvinenko V. Stability of supramolecular compounds under heating. Thermodynamic and kinetic aspects. J. Therm. Anal. Calorim., 2010, 101, P. 577–583.

34. Logvinenko V., Drebushchak V., Pinakov D., Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J. Therm. Anal. Calorim., 2007, 90, P. 23–30.

35. Ginak A.Y., Dimshits V.A., Rosovskiy A.Ya. Kinetics of the anisotropic reactions. Part I. Theoretical model. Kinetika i katalis, 1989, 30, P. 83–91 (in Russian).


Review

For citations:


Logvinenko V.A., Makotchenko V.G., Fedorov V.E. Reactivity in combustion process for expanded graphites: influence of dimensional effect. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(1):234-243. https://doi.org/10.17586/2220-8054-2016-7-1-234-243

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)