Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Prediction of glass forming ability in CuxZr1−x alloys using molecular dynamics

https://doi.org/10.17586/2220-8054-2015-6-5-650-660

Abstract

 Binary CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62) alloy systems were developed using a conventional melting route. Molecular dynamics (MD) simulations have been carried out using the embedded atom method (EAM) potentials. Radial distribution function (RDF) and Voronoi calculations have been conceded for amorphous structure verification. The reduced glass transition temperature (Trg) has been determined in order to predict the glass forming ability (GFA) of these alloys. Tl is found to be a better substitute for Tm and the simulated Trg values are seen to be in good agreement with the experimental results in limits of 0.8 – 5.4 %. 

About the Authors

M. M. Khandpekar
Materials Research Lab, Department of Physics, Birla College
India

Kalyan – 421304



A. Shrivastava
Materials Research Lab, Department of Physics, Birla College
India

Kalyan – 421304



D. S. Gowtam
Naval Material Research Lab, Shil-Badlapur Road Ambernath
India

Thane, Maharashtra – 42150



M. Mohape
Naval Material Research Lab, Shil-Badlapur Road Ambernath
India

Thane, Maharashtra – 42150



V. P. Deshmukh
Naval Material Research Lab, Shil-Badlapur Road Ambernath
Russian Federation

Thane, Maharashtra – 42150



References

1. Guo F.Q., Poon S.J., Shiflet G. J. CaAl-based bulk metallic glasses with high thermal stability. Appl. Phys. Lett., 2004, 84, P. 37–39.

2. Fan C., Takeuchi A., Inoue A. Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases. Mater. Trans. JIM, 1999, 40, P. 42–51.

3. Drehman A.J., Greer A.L., Turnbull D. Bulk formation of a metallic glass: palladium-nickel-phosphorus (Pd40Ni40P20). Appl. Phys. Lett., 1982, 41, P. 716.

4. Inoue A., Zhang T., Masumoto T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by metallic mould casting method. Mater. Trans. JIM, 1990, 31, P. 425–428.

5. Pecker A., Johnson W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett., 1993, 63, P. 2342–2344.

6. Zhang T., Inoue. A, Masumoto T. Amorphous Zr–Al–Tm (Tm=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater Trans. JIM, 1991, 32, P. 1005–1010.

7. Johnson W.L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Bull., 1999, 24, P. 42– 56.

8. Loffler J.F. Bulk metallic glasses. Intermetallics, 2003, 11, P. 529–540.

9. Lu Z.P., Liu. C.T. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett., 2003, 91, P. 115505.

10. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48, P. 279–306.

11. Inoue A., Zhang T., Masumoto T. Glass-forming ability of alloys. J. Non-Cryst. Solids., 1993, 156, P. 473–480.

12. Cheng Y.Q., Sheng H.W., Ma E. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B, 2008, 78, P. 014207.

13. Li Y., Poon S.J., et al. Formation of bulk metallic glasses and their composites. MRS Bull., 2007, 32, P. 624–628.

14. Kittel C. Introduction to Solid State Physics. Wiley, New York, 2005, 704 p.

15. Cohen E.R., Lide D.R., Trigg G.L. AIP Physics Desk Reference. AIP Press, New York, 2003, 843 p.

16. Turnbull D. Under What Conditions can a Glass be Formed? Cont. Phys., 1969, 10 (5), P. 473–488.

17. Wendt H.R., Abraham F.F. Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations. Phys. Rev. Lett., 1978, 41, P. 1244.

18. Kao S.W., Hwang C.C., Chi T.S. Simulation of reduced glass transition temperature of Cu–Zr alloys by molecular dynamics. J. Appl. Phys., 2009, 105, P. 064913.

19. Gunawardana K.G.S.H., Wilson S.R., Mendelev M.I., Song X. Theoretical calculation of the melting curve of Cu–Zr binary alloys. Phys. Rev. E, 2014, 90, P. 052403.

20. Mendelev M.I., Sordelet D.J., Kramer M.J. Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys., 2007, 102, P. 043501.

21. Plimpton S.J. Fast parallel algorithms for short-range molecular dynamics. Comp. Phys., 1995, 117, P. 1–19.

22. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Mater. Sci. Eng., 2010, 18, P. 015012.

23. Qi Y., Cagin T., Kimura Y., Goddard W.A. Molecular-Dynamics Simulations of Glass Forming and Crystallization in Binary Liquid Metals: Cu–Ag and Cu–Ni. Phys. Rev. B, 1999, 59, P. 3527–3533.

24. Finney J.L. Modelling the structures of amorphous metals and alloys. Nature, 1977, 266, P. 309–314.

25. Stepanyuk V.S., Katsnelson A.A., et al. Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics. J. Non-Cryst. Solids., 1993, 159, P. 80–87.

26. Peng H.L., Li M.Z., et al. Effect of local structures and atomic packing on glass forming ability in CuxZr100−x metallic glasses. Appl. Phys. Lett., 2010, 96, P. 021901.

27. Tang M.B., Zhao D.Q., Pan M.X., Wang W.H. Binary Cu–Zr bulk metallic glasses. Chin. Phys. Lett., 2004, 21, P. 901–903.

28. Park K.W., Jang J.I., et al. Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scr. Mater., 2007, 57, P. 805–808.

29. Ma D., Stoica A.D., et al. Efficient local atomic packing in metallic glasses and its correlation with glassforming ability. Phys. Rev. B, 2009, 80, P. 014202.

30. Duan G., Xu D., et al. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys. Rev. B, 2005, 71, P. 224208.


Review

For citations:


Khandpekar M.M., Shrivastava A., Gowtam D.S., Mohape M., Deshmukh V.P. Prediction of glass forming ability in CuxZr1−x alloys using molecular dynamics. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):650-660. https://doi.org/10.17586/2220-8054-2015-6-5-650-660

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)