Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Analytical benchmark solutions for nanotube flows with variable viscosity

https://doi.org/10.17586/2220-8054-2015-6-5-672-679

Аннотация

Three-dimensional Stokes equations with variable viscosity in cylindrical coordinates are considered. This case is natural for flow through a nanotube in biological applications. We obtain exact particular solutions – a benchmark for numerical approache. 

Об авторах

I. Makeev
ITMO University
Россия


I. Blinova
ITMO University
Россия


I. Popov
ITMO University
Россия


Список литературы

1. Zhang H., Xu Sh., Jeffries G.D.M., Orwar O., Jesorka A. Artificial nanotube connections and transport of molecular cargo between mammalian cells. Nano Comm. Net., 2013, 4(4), P. 197–204.

2. Li T.-D., Gao J., Szoszkeiwicz R., Landman U., Riedo E. Structured and viscous water in subnanometr gaps. Phys. Rev. B, 2007, 75, P. 115415.

3. Popov I.Yu., Chivilikhin S.A., Rodygina O.A., Gusarov V.V. Crystallite model for flow in nanotube caused by wall soliton. Nanosystems: Phys. Chem. Math., 2014, 5(3), P. 400–404.

4. Popov I. Statistical derivation of modified hydrodynamic equations for nanotube flows. Phys. Scripta, 2011, 83, P. 045601/1-5.

5. Mashl R.J., Joseph S., Aluru N.R., Jacobsson E. Anomalously immobilized water: A new water phase induced by confinement in nanotubes. Nano Letters, 2003, 3(5), P. 589–592.

6. Kolesnikova S.A., Loonga C.K., de Souzaa N.R., Burnhamb C.J., Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes, Physica B, 2006, 385-386, P. 272–274.

7. Popov I., Makeev I. A benchmark solution for 2-D Stokes flow over cavity, Z. Angew. Math.Phys., 2014, 65, P. 339–348.

8. Popov A.I., Gerya T., Lobanov I.S., Popov I.Yu. Benchmark solutions for nanoflows. Nanosystems: Phys. Chem. Math., 2014, 5(2), P. 391–399.

9. Popov A.I., Gerya T., Lobanov I.S., Popov I.Yu. On the Stokes flow computation algorithm based on Woodbury formula. Nanosystems: Phys. Chem. Math. 2015, 6(1), P. 140–145.

10. Gerya T. Introduction to Numerical Geodynamic Modelling. Cambridge: Cambridge University Press, 2010.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2015;6(5):672-679. https://doi.org/10.17586/2220-8054-2015-6-5-672-679

For citation:


Makeev I.V., Blinova I.V., Popov I.Yu. Analytical benchmark solutions for nanotube flows with variable viscosity. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):672-679. https://doi.org/10.17586/2220-8054-2015-6-5-672-679

Просмотров: 5


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)