Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase transition and storage of quantum optical information using polaritons in spatially-periodical structures

About the Authors

A. P. Alodjants

Russian Federation


S. M. Arakelian

Russian Federation


S. N. Bagayev

Russian Federation


References

1. Кеттерле B. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер. УФН, 2003, 173 (14), 1339–1358.

2. Bagayev S.N., Vasil’ev V.V., Egorov V.S., Lebedev V.N., Mekhov I.B., Moroshkin P.V., Fedorov A.N., Chekhonin I.A. Coherent light sources under strong field–matter coupling in an optically dense resonant medium without population inversion. Laser Physics, 2005, 15(7), 975–982.

3. Ораевский А.Н. Бозе-конденсаты с точки зрения лазерной физики. Квантовая электроника, 2001, 31, 1038–1057.

4. Скалли М.О., Зубайри М.С., Квантовая оптика, Москва, Физматлит, 2003, 512с

5. Kavokin A, Malpuech G., Laussy F.P. Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A, 2003, 306, 187–199.

6. Klaers, J., Vewinger, F., Weitz, M. Thermalization of a two-dimensional photonic gas in a ’white-wall’ photon box. Nature Physics, 2010, 6, 512-515

7. Deng H., Weihs G., Snoke D., Bloch J., Yamamoto Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. PNAS, 2003, 100 (24), 15318–15323.

8. Kasprzak J., Richard M., Kundermann S., Baas A., Jeambrun P., Keeling J.M.J., Marchetti F.M., Szymanska M.H., Andre R., Staehli J.L., Savona V., Littlewood P.B., Deveaud B., Dang Le Si. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409–414.

9. Balili R., Hartwell V., Snoke D., Pfeiffer L., West K. Bose-Einstein Condensation of microcavity polaritons in a trap. Science, 2007, 316, 1007–1010.

10. Amo A., Lefrere J., Pigeon S., Adrados C., Ciuti C., Carusotto I., Houdre R., Giacobino E., Bramati A. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 2009, 5(11), 805–810.

11. Utsunomiya S., Tian L., Roumpos G., Lai C.W., Kumada N., Fujisawa T., Kuwata-Gonokami M., Loffler A., ¨ Hofling S., Forchel A., Yamamoto Y. Observation of Bogoliubov excitations in exciton-polariton condensates. ¨ Nature Physics, 2008, 4(12), 700–705.

12. Bagnato V., Kleppner D.K. Bose-Einstein condensation in low-dimensional traps. Phys. Rev. A, 1991, 44 (11), 7439–7441.

13. Petrov D.S., Gangardt G.M., Shlyapnikov G.V. Low-dimensional trapped gases. J.Phys. IV France, 2004, 116, 3–45 .

14. Аверченко В.А., Алоджанц A.П., Аракелян С.М., Багаев С.Н., Виноградов Е.А., Егоров В.С., Столяров А.И., Чехонин И.А. Высокотемпературная бозе-эйнштейновская конденсация поляритонов: реализация в условиях внутрирезонаторной лазерной накачки вещества. Квантовая Электроника, 2006, 36(6), 532–538.

15. Chestnov I. Yu., Alodjants A. P., Arakelian S. M., Nipper J., Vogl U., Vewinger F., Weitz M. Thermalization of coupled atom-light states in the presence of optical collisions. Phys. Rev. A., 2010, 81(5), 053843-1–13.

16. Bloch I. Exploring quantum matter with ultracold atoms in optical lattices. J. Phys. B: At. Mol. Opt. Phys., 2005, 38, S629–S643; Jaksch D., Zoller P. The cold atom Hubbard toolbox. Annals of Phys., 2005, 315(1), 52–79.

17. Silver A.O., Hohenadler M., Bhaseen M. J., Simons B.D. Bose-Hubbard models coupled to cavity light fields. Phys. Rev. A, 2010, 81(2), 023617-1–15.

18. Hartmann M.J., Brandao F., Plenio M.B. Strongly interacting polaritons in coupled arrays of cavities. Nature Physics, 2006, 2(14), 849–855; Greentree A.D., Tahan C., Cole J.H., Hollenberg L.C.L. Quantum phase transitions of light. Nature Physics, 2006, 2(14), 856–861.

19. Soi-Chan Lei, Ray-Kuang Lee. Quantum phase transitions of light in the Dicke-Bose-Hubbard model. Phys. Rev. A, 2008, 77(3), 033827-1–8.

20. Fleischhauer M., Otterbach J., Unanyan R.G. Bose-Einstein Condensation of Stationary-Light Polaritons. Phys. Rev. Lett., 2008, 101(16), 163601-01–04.

21. Alodjants A.P., Barinov I.O., Arakelian S.M. Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field. J. Phys. B: At. Mol. Opt. Phys., 2010, 43(12), 095502-1–10.

22. Painter O., Vuckovic J., Scherer A. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B, 1999, 16(2), 275–285; Lee R.K., Painter O., Kitzke B., Scherer A., Yariv A. Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab. J. Opt. Soc. Am. B, 2000, 17(4), 629–633.

23. Braginsky V.B., Gorodetsky M.L., Ilchenko V.S. Quality factor and nonlinear properties of optical whisperinggallery modes. Phys. Lett. A, 137, 1989, 393–397; Vernooy D.W., Kimble H.J. Quantum structure and dynamics for atom galleries. Phys. Rev. A, 1997, 55(2), 1239–1261; Buck J.R., Kimble H.J. Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A, 2003, 67(3), 033806-1–033806-11; Deych L.I., Roslyak O. Photonic band mixing in linear chains of optically coupled microspheres. Phys. Rev. E, 2006, 73(3), 036606-1–036606-12.

24. Smerzi A., Trombettoni A., Kevrekidis P.G., Bishop A.R. Dynamical Superfluid-insulator transition in a chain of weakly coupled Bose-Einstein Condensates. Phys. Rev. Lett., 2002, 89(17), 170402-1–4.

25. Holstein T., Primakoff H. Field Dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 1940, 58(14), 1098–1113.

26. Alodjants A.P., Arakelian S.M., Bagayev S.N., Egorov V.S., Leksin A.Yu. Josephson dynamics for coupled polariton modes under the atom–field interaction in the cavity. Applied Physics B, 2007, 89(1), 81–89.

27. Karr J. Ph., Baas A., Giacobino E. Twin polaritons in semiconductor microcavities. Phys. Rev. A, 2004, 69(6), 063807-1–12.

28. Alodjants A.P., Arakelian S.M., Bagayev S.N., Chekhonin I.A., Egorov V.S. Quantum cloning in coupled states of an optical field and an atomic ensemble by means of quasi-condensation of polaritons. J. of Rus. Laser Research, 2006, 27(5), 482–491.

29. Fleischauer M., Lukin M.D. Quantum memory for photons: dark-state polaritons. Phys. Rev. A, 2002, 65(2), 022314-1–12 .

30. Hau L.N., Harris S.E., Dutton Z., Behroozi C.H. Light speed reduction to 17 meters per second in an ultracold atomic gas. Lett. to Nature, 1999, 397, 594–596.

31. Gersen H., Karle T.J., Engelen R.J.P., Bogaerts W., Korterik J.P., van Hulst N.F., Krauss T.F., Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Pys. Rev. Lett., 2005, 94(7), 073903- 1–073903-4.

32. Yanik M.F., Fan S. Stopping and storing light coherently. Phys. Rev. A, 2005, 71(1), 013803-1–10.

33. Александров Е.Б., Запасский В.С. В погоне за «медленным светом». УФН, 2004, 174, 1093–1102.

34. Phillips D. F., Fleischhauer A., Mair A., Walsworth R. L., Lukin M. D. Storage of light in atomic vapor, Phys.Rev.Lett. 2001, 86 (5), 783-787

35. Alodjants A.P., Arakelian S.M., Leksin A.Yu. Storage of quantum optical information based on the intracavity polaritons under the Bose–Einstein Condensation conditions. Laser Physics,2007, 17(11), 1–9.

36. Zhang Z. M., Park K., On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium. J. of Heat Transfer, 2004, 126, 244-249

37. Loudon R. The propagation of electromagnetic energy through an absorbing dielectric, J. of Phys. A, 1970, 233- 245.

38. Agranovich V.M., Litinskaia M, Lidzey D.G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B., 2003, 67(8), 085311-1-10.


Review

For citations:


Alodjants A.P., Arakelian S.M., Bagayev S.N. Phase transition and storage of quantum optical information using polaritons in spatially-periodical structures. Nanosystems: Physics, Chemistry, Mathematics. 2010;1(1):7-25. (In Russ.)

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)