Electrical properties of hot wall deposited PbTe–SnTe thin films
Abstract
Polycrystalline Pb1−xSnxTe (0.0 ≤ x ≤ 1.0) telluride alloys were synthesized by the direct fusion technique. Thin films of these materials were prepared by a hot wall deposition method on glass substrates at Tsub =230–330 ◦C and in a vacuum of about 10−5 Torr. The microstructure of the films was characterized by XRD, SEM, EDX and AES. The films showed a natural cubic structure. The thin films’ microstructure consisted of densely packed grains with dimensions of 50–300 nm and crystallite growth direction is perpendicular to substrate plane. The as-grown Pb1−xSnxTe films showed p-type conductivity. Thermoelectric measurements of the films showed high values for the room-temperature Seebeck coefficient ranging, from 20 to 400 µV·K−1, for SnTe to PbTe thin films, respectively. The conductivity of the films was in the range of 3·101–1·104 Ω−1·cm−1.
About the Authors
V. A. IvanovBelarus
P. Brovka Street 19, 220072 Minsk.
V. F. Gremenok
Belarus
P. Brovka Street 19, 220072 Minsk.
H. G. Seidi
Belarus
P. Brovka Street 19, 220072 Minsk.
S. P. Zimin
Russian Federation
Sovetskaya Street 14, 150000 Yaroslavl.
E. S. Gorlachev
Russian Federation
Sovetskaya Street 14, 150000 Yaroslavl.
References
1. Goldsmith J.H. Thermoelectric refrigeration. Plenum New York, 2000, 281 p.
2. Nishida I.A. Grain size effect on thermoelectric properties of PbTe prepared by spark plasma sintering. Material Japan, JIM, 35, P. 943–947 (1996).
3. Dimmock J.O. Meingailis I. Band structure and laser action in PbxSn1−xTe. Phys. Rev. Lett., 26, P. 1193–1197 (1966).
4. Xing Gao, Murray S.D. Investigation of band inversion in (Pb,Sn)Te alloys using ab initio calculations. Physical Review B, 77, P. 033103 (2008).
5. Lopez O. Hot wall epitaxy. Thin Solid Films, 49, P. 3–7 (1978).
6. Schikora D., Sitter H., J. Humenberger J. High quality CdTe epilayers on GaAs grown by hot wall epitaxy. Appl. Phys. Lett., 48, P. 1276–1279 (1986).
7. Pal A.K., Mondal A., Chaudhuri S. Preparation and characterization of ZnTe/CdSe solar cells. Vacuum, 41, P. 1460–1463 (1990).
8. Seto S., Yamada S., Suzuki K. Growth kinetics and structural characterization of polycrystalline CdTe films grown by hot-wall vacuum evaporation. Solar Energy Materials and Solar Cells, 50, P. 133–137 (1998).
9. Muthukumarasamy N., Balasundaraprabhu R., Jayakumar S., Kannan M.D. Photoconductive properties of hot wall deposited CdSe0.6Te0.4 thin films. Materials Science and Engineering B, 137, P. 1–3 (2007).
10. Bashkirov S.A., Lazenka V.V., Gremenok V.F., Bente K. Microstructure of SnS thin films obtained by hot wall vacuum deposition method. J. Adv. Microsc. Res., 6, P. 153–156 (2011).
11. Bashkirov S.A., Gremenok V.F., et al. Tin sulfide thin films and ZnO/n-CdS/p-SnS/Mo heterojunctions for photovoltaic applications. Thin Solid Films, 520, P. 5807–5810 (2012).
12. Schaffler R., Klose M., Schock H.W. Pulsed laser deposition and characterization of CuInSe thin films for solar cell applications. Materials Science Forum Vois., 173, P. 135–138 (1995).
13. Farinre T.O., Zemel J.N. Preparation and properties of Pb1−xSnxTe epitaxial films. J. Vacuum Sci. Technology, 7, P. 121–123 (1970).
Review
For citations:
Ivanov V.A., Gremenok V.F., Seidi H.G., Zimin S.P., Gorlachev E.S. Electrical properties of hot wall deposited PbTe–SnTe thin films. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):816-822.