Method of the “imaginary boundary” in the study of the optical properties of ordered nanostructures
Abstract
Optical properties of spatially ordered nanocomposites consisting of spherical dielectric nanoparticles have been investigated. We proposed an analytical solution allowing us to use simple Airy formulas (“imaginary boundary” method) to describe interaction of a light with an ordered nanostructure without averaging of optical constants over the volume. We show the good agreement with strict numerical simulations’ results.
About the Authors
A. S. ShalinRussian Federation
Alexander Shalin, PhD in Physics
Ul’yanovsk
A. S. Kadochkin
Russian Federation
Alexey Kadochkin, PhD in Physics
Ul’yanovsk
References
1. Shalaev V.M., Cai W., Chettiar U. K., Yuan H.-K., Sarychev A. K., Drachev V. P., Kildishev A. V. Negative index of refraction in optical metamaterials // Opt. Lett. — 2005. — V.30. — P. 3356–3358.
2. Smith D. R. and Pendry J. B. Homogenization of Metamaterials by Field Averaging // J. Opt. Soc. Am. B. — 2006. — V. 23.— P. 391–403.
3. Agranovich V. M., Shen Y. R., Baughman R. H., and Zakhidov A. A. Linear and nonlinear wave propagation in negative refraction metamaterials // Phys. Rev. B. — 2004. — V. 69. — P. 165112.
4. Гадомский О. Н., Шалин А. С. Эффект оптического просветления нанокристаллического монослоя и границы раздела двух сред // ЖЭТФ. — 2007. — Т. 132, №10. — P. 870–884.
5. Grigorenko N., Geim A. K., Gleeson H. F., Zhang Y. Nanofabricated media with negative permeability at visible frequencies // Nature. — 2005. — V. 438. — P. 335–338.
6. Zhang S., Fan W., Panoiu N. C., Malloy K. J., Osgood R. M., and Brueck S. R. J. Experimental demonstration of Near-Infrared Negative-Index Metamaterials // Phys. Rev. Lett. — 2005. — V. 95. — P. 137404.
7. J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T._M. Lu, S.-Y. Lin, J. S. Juneja. Very low-refractive-index optical thin films consisting of an array of SiO<sub>2</sub> nanorods. // Opt. Lett. — 2006. — V. 31. P. 601–603.
8. Mishchenko M. I., Travis L. D., Lacis A. A. Scattering, absorption and emission of light by small particles. — Cambridge: Cambridge university press, 2002. — 457 p.
9. Haarmans M. T., Bedeaux D. The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate. // Thin Solid Films. — 1993. — V. 224. — P. 117–131.
10. Mie G. Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osungen // Ann. Phys. – 1908. — V. 25. — P. 377.
11. Arfken G. B., Weber H. J. Mathematical Methods for Physicists. — New York: Academic Press, 1995. — 1195 p.
12. Taflove A., Hagness S. C. Computational Electrodynamics: The Finite-difference Time-Domain Method. — Boston: Artech House, 2000. — 886 p.
13. Prather D. W., Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements // J. Opt. Soc. Am. A. — 1999. — V. 16. — P. 1131–1142.
14. Шалин А. С., Моисеев С. Г. Оптические свойства наноструктурных слоев на поверхности подстилающей среды // Оптика и спектроскопия. — 2009. — Т. 106. № 6. — P. 1004–1013.
15. Шалин А. С. Эффективные оптические параметры упорядоченных нанокомпозитов. // Радиотехника и электроника. — 2009. — Т. 54, № 6. — С. 733–741.
16. Shalin A. S. Optical Antireflection of a Medium by Nanostructural Layers // Progress in Electromagnetic Research B. — 2011. — V. 31. — P. 45–66.
17. Борн М. Вольф Э. Основы оптики. — Москва: Наука, 1973. — 720 с.
18. Борен К., Хаффмен Д. Поглощение и рассеяние света малыми частицами. — Москва: Мир, 1986. — 664 с.
19. Mishchenko M. I., Travis L. D., and Lacis A. A.. Scattering, Absorption and Emission of Light by Small Particles. — Cambridge: Cambridge university press , 2002. — 351 p.
20. M. J. Wijers and G. P. M. Poppe. Microscopic treatment of the angular dependence of surface induced optical anisotropy. // Phys. Rev. B. — 1992. — V. 46. P. 7605–7620.
21. G. P. M. Poppe, C. M. J. Wijers, and A. Silfhout. IR spectroscopy of CO physisorbed on NaCl(100): Microscopic treatment // Phys. Rev. B. — 1991. — V. 44. — P. 7917–7929.
22. G. W. Milton: The Theory of Composites. — Cambridge: Cambridge university press, 2004. — 420 p.
Review
For citations:
Shalin A.S., Kadochkin A.S. Method of the “imaginary boundary” in the study of the optical properties of ordered nanostructures. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(5):76-83. (In Russ.)