Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of hexagonal LaF3: Nd3+, Sm3+ nano crystals and studies of NLO properties

Abstract

Hexagonal shaped LaF3 nanocrystals (NC) doped by Nd3+ and Sm3+ ions were synthesized using a domestic microwave oven. The powder XRD study confirmed that the crystalline size of the particle was approximately 20 nm (JCPDS standard card (32–0483) of pure hexagonal LaF3 crystals). The Transmission Electron Microscope (TEM) analysis indicated the size of the primary and secondary particles were between 15–20 nm. The presence of fundamental groups was verified by FTIR spectra. The synthesized nanocrystals were also studied for Non-Linear Optical (NLO) properties. The Second Harmonic Generation (SHG) efficiencies of LaF3: Nd3+, Sm3+containing rare earth elements were found to be less than that of pure Potassium Dihydroxyl Phosphate (KDP) crystals. Keywords: microwave radiation, hexagonal shape, luminescent properties, x-ray diffraction.

About the Authors

S. G. Gaurkhede
Bhavans College of ASC
India

Department of Physics

Andheri (W) Mumbai-400058



M. M. Khandpekar
Birla College
India

Material Research Lab, Department of Physics

Kalyan – 421304



S. P. Pati
National Institute of Science and Technology
India

Palur Hills, Behrampur-761008, Odisha



A. T. Singh
K.M. Agarwal College of ASC
India

Department of Physics

Kalyan-421301



References

1. B.M. Tissue. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 10 (10), P. 2837–2845 (1998).

2. H. Song, B. Chen, et al. Ultraviolet light-induced spectral change in cubic nano-crystalline Y2O3: Eu3+. Chemical Physics Letters, 372 (3), P. 368–372 (2003).

3. M. Nishi, S. Tanabe, et al. Optical telecommunication- band fluorescence properties of Er3+-doped YAG nanocrystals synthesized by glycothermal method. Optical Materials, 27 (4), P. 655–662 (2005).

4. M.M. Lezhnina, H. Kaetker, U.H. Kynast. Synthesis and optical characterization of rare earth nanofluorides. Optical Materials, 30 (2), P. 264–272 (2007).

5. Y.X. Pan , Q. Su, et al. Synthesis and red luminescence of Pr3+ doped CaTiO3 nanophosphor from polymer precursor. J. Solid State Chem, 174 (1), P. 69–73 (2003).

6. P.Y. Jia, J. Lin, M. Yu. Sol-gel deposition and luminescence properties of LiYF4: Tb3+ thin films. Journal of Luminescence, 122 (1), P. 134–136 (2007).

7. S. Sivakumar, F.C.J.M. Van Veggel, P.S. May. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La045Yb050Er005F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero LEET): a new up-conversion process. Journal of the American Chemical Society, 129 (3), P. 620–625 (2007).

8. J.S. Zhang, W.P. Qin, D. Zhao. Spectral variations and energy transfer processes on both Er3+ ion concen tration and excitation densities in Yb3+-Er3+ co-doped LaF3 materials. Journal of Luminescence, 122 (2), P. 506–508 (2007).

9. F. Evanics, P.R. Diamente, et al. Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chemistry of Materials, 18 (10), P. 2499–2505 (2006).

10. F. Wang, Y. Zhang, X. Fan, M. Wang. One-pot synthesis of chitosan / LaF3:Eu3+ nanocrystals for bio applications. Nanotechnology, 17 (5), P. 1527–1532 (2006).

11. P.R. Diamente, F.C.J.M. Van Veggel. Water-soluble Ln3+-doped LaF3 nanoparticles: retention of strong luminescence and potential as biolabels. Journal of Fluorescence, 15 (4), P. 543–551 (2005).

12. D.Y. Kong, Z.L. Wang, C.K. Lin, Z.W. Quan. Bio-functionalization of CeF3:Tb3+ nanoparticles. Nanotech nology, 18 (7), Article ID 075601 (2007).

13. M. Bralic, N. Radic, S. Brinic, E. Generalic. Fluoride electrode with LaF3-membrane and simple disjoining solid state internal contact. Talanta, 55 (3), P. 581–586 (2001).

14. N. Miura, J. Hisamoto, et al. Solid-state oxygen sensor using sputtered LaF3 film. Sensors and Actuators, 16 (4), P. 301–310 (2001).

15. O.V. Kudryavtseva, L.S. Garashina, K.K. Rivkina, B.P. Sobolev. Solubility of LnF3 in lanthanum fluoride. Soviet Physics-Crystallography, 18 (2), P. 531–536 (1974).

16. H.R. Zheng, X.J. Wang, et al. Up-converted emission in Pr3+ doped fluoride nanocrystals-based oxyfluoride glass ceramics. Journal of Luminescence, 108 (14), P. 395–399 (2004).

17. X.J. Wang, S.H. Huang, R. Reeves. Studies of the spectroscopic properties of Pr3+ doped LaF3 nanocrys tals/glass. Journal of Luminescence, 94, P. 229–233 (2001).

18. S. Tanabe, H. Hayashi, T. Hanada, N. Onodera. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals. Optical Materials, 19 (3), P. 343–349 (2002).

19. M.J. Dejneka. The luminescence and structure of novel transparent oxyfluoride glass-ceramics. Journal of Non- Crystalline Solids, 239 (1), P. 149–155 (1998).

20. S. Fujihara, C. Mochizuki, T. Kimura. Formation of LaF3 microcrystals in sol-gel silica. Journal of Non Crystalline Solids, 244 (2), P. 267–274 (1999).

21. B.S. Zhuchkov, V.P. Tolstoy, I.V. Murin. Synthesis of ScF3, LaF3 nanolayers and nLaF3-mScF3 multinanolay ers at the surface of silicon by successive ionic layer deposition method. Solid State Ionics, 101 (1), P. 165–170 (1997).

22. J.F. Zhou, Z.S. Wu, et al. Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear, 249 (6), P. 333–337 (2001).

23. D.B. Pi, F. Wang et al. Luminescence behavior of Eu3+ doped LaF3 nanoparticles. Spectrochimica Acta A, 61 (11), P. 2455–2459 (2005).

24. J.W. Stouwdam, G.A. Hebbink, et al. Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chemistry of Materials, 15 (24), P. 4604–4616 (2003).

25. J.X. Meng, M.F. Zhang, Y.L. Liu. Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles. Spectrochimica Acta A, 66 (1), P. 81–85 (2007).

26. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. The Journal of Chemical Physics, 90 (7), P. 3443–3457 (1989).

27. Y.F. Liu, W. Chen, et al. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+, Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 103 (6), Article ID 063105 (2008).

28. F. Wang, Y. Zhang, X. Fan, M. Wang. Facile synthesis of water-soluble LaF3:Ln3+ nanocrystals. Journal of Materials Chemistry, 16 (11), P. 1031–1034 (2006).

29. J. Wang, J. Hu, et al. Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplificationapplications. Journal of Materials Chemistry, 17 (16), P. 1597–1601 (2007).

30. X. Wang, J. Zhuang, Q. Peng, Y. Li. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorganic Chemistry, 45 (17), P. 6661–6665 (2006).

31. H. Guo, T. Zhang, et al. Ionic liquid based approach to monodisperse luminescent LaF3:Ce,Tb nanodiskettes: synthesis, structural and photoluminescent properties. Journal of Nanoscience and Nanotechnology, 10 (3), P. 1913–1919 (2010).

32. W.Y. Feng, T.Y. Wen, et al. Synthesis of LaF3 superfine powder by microwave heating method. Trans. Nonferrous Met. Soc. China, 14 (4), P.738–741 (2004).

33. P.J. Thistlethwaite, M.S. Hook. Diffuse reflectance fourier transform infrared study of the adsorption of oleate/oleic acid onto titania. Langmuir, 16 (11), P.4993–4998 (2000).

34. P.J. Thistlethwaite, M.L. Gee, D. Wilson. Diffuse reflectance infrared fourier transform spectroscopic studies of the adsorption of oleate/oleic acid onto zirconia, Langmuir, 12 (26), P. 6487–6491 (1996).

35. S.K. Kurtz, T.T. Perry. A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics, 39 (8), P. 3798–3813 (1968)


Review

For citations:


Gaurkhede S.G., Khandpekar M.M., Pati S.P., Singh A.T. Synthesis of hexagonal LaF3: Nd3+, Sm3+ nano crystals and studies of NLO properties. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):241-246.

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)