Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Polyaniline-Titanium dioxide composite as humidity sensor at room temperature

https://doi.org/10.17586/2220-8054-2016-7-4-732-739

Abstract

In the present work, Polyaniline (PANI) and Polyaniline-Titanium dioxide (PANI-TiO2) composite have been synthesized separately by chemical polymerization of aniline without/with TiO2. Characteristic absorption bands of PANI and TiO2 in the composite were confirmed by FT-IR studies, indicating the interaction of PANI with TiO2. Comparative study of XRD patterns of PANI and the composite confirmed superficial deposition of PANI on TiO2 and the average size of the composite particle was found to be 25 nm. The aggregated granular porous morphology of the composite was confirmed by its SEM image. The composite’s sensing response to humidity at room temperature was tested and was found to be 84.21 % in the range 25 % – 95 % RH. The response and recovery time of the composite at 95 % RH were measured to be 60s and 100s respectively and its sensing stability over a period of one month was also confirmed.

About the Authors

S. Kotresh
Government Science College
India

Department of PG Studies and Research in Physics

Chitradurga 577501



Y. T. Ravikiran
Government Science College
India

Department of PG Studies and Research in Physics

Chitradurga 577501



N. G. Raj Prakash
JNN College of Engineering
India

Department of Physics

Shivamogga 577204



S. C. Vijaya Kumari
SJM College of Arts, Science and Commerce
India

Department of Physics

Chitradurga 577501



References

1. Tang W., Peng L., Yuan C., Wang J., Mo S., Zhao C., Yu Y., Min Y., Epstein A.J. Facile synthesis of 3D reduced grapheme oxide and its Polyaniline nanocomposites for super capacitor application. Synth. Met., 2015, 202, P. 140–146.

2. Bahloul A., Nessark B., Briot E., Groult H., Mauger A., Zaghib K., Julien C.M. Polypyrrole-covered MnO2 as electrode material for supercapacitor. J. Power Sources., 2013, 240, P. 267–272.

3. Rajesh., Ahuja T., Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B., 2009, 136, P. 275–286.

4. Memjoglu F., Bayrakceken A., Tuba Oznuluer T., Metin A.K. Synthesis and characterization of polypyrrole/carbon nanocomposite as a catalyst support for fuel cell applications. Int. J. Hydrogen Energy., 2012, 37, P. 16673–16679.

5. Shin S., Kim S., Kim Y. H., Kim S. Enhanced performance of organic light-emitting diodes by using hybrid anodes composed of polyaniline and conducting polymer. Curr. Appl. Phys., 2013, 13, P. S144–S147.

6. Ali Y., Vijay K., Sonkawade R.G., Shirsat M.D., Dhaliwal A.S. Two-step electrochemical synthesis of Au nanoparticles decorated Polyaniline nanofiber. Vacuum, 2013, 93, P. 79–83.

7. Ali Y., Kashma S., Kumar V., Sonkawade R.G., Dhaliwal A.S. Polypyrrole microspheroidals decorated with Ag nanostructure: Synthesis and their characterization. Appl. Surf. Sci., 2013, 280, P. 950–956.

8. Ali Y., Vijay K., Sonkawade R.G., Dhaliwal A.S. Effect of swift heavy ion beam irradiation on Au–Polyaniline nanocomposite films. Vacuum, 2013, 90, P. 59–64.

9. Kadam S.B., Datta K., Ghosh P., Kadam A.B., Khirade P.W., Kumar V., Sonkawade R.G., Gambhire A.B., Lande M.K., Shirsat M.D. Improvement of ammonia sensing properties of poly(pyrrole)–poly (n-methylpyrrole) nanocomposite by ion irradiation. Appl. Phys., A 2013, 100, P. 1083–1088.

10. Ghoreishi K.B.,Yarmo M.A., Nordin N.M., Samsudin M.W. Enhanced catalyst activity of WO3 using polypyrrole as support for acidic esterification of Glycerol with Acetic Acid. J. Chem., 2013, article ID 264832, P. 1–10.

11. Lee S.B., Lee S.M., Lee S., Chung D.W. Preparation and characterization of conducting polymer nanocomposite with partially reduced grapheme oxide. Synth. Met., 2015, 201, P. 61–66.

12. Kanwal F., Siddiqi S.A., Batool A., Imran M., Mushtaq W., Jamil T. Synthesis of polypyrrole–ferric oxide (Ppy–Fe2O3) nanocomposites and study of their structural and conducting properties. Synth. Met., 2011, 161, P. 335–339.

13. Ramaprasad A.T., Rao V. Chitin-polyaniline blend as humidity sensor. Sens. Actuat. B, 2010, 148, P. 117–125.

14. Zeng F.W., Liu X., Diamond D., Lau K.T. Humidity sensors based on Polyaniline nanofibres. Sens. Actuat. B, 2010, 143, P. 530–534.

15. MaDiarmid A.G. Semiconducting and metallic polymers: The fourth generation of polymeric materials. Synth. Met., 2002, 125, P. 11–22.

16. Lin Q., Li Y., Yang M. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospunpolyaniline/poly (vinyl butyral) nanofibres. Anal. Chim. Acta., 2012, 748, P. 73–80.

17. Chani M.T.S., Karimov K.S., Khalid F.A., Abbas S.Z., Bhatty M.B. Orange dye polyaniline composite based impedance humidity sensors. Chin. Phys., 2012, 22, P. 010701.

18. Li Y., Deng C., Yang M. Novel surface acoustic wave-impedance humidity sensor based on composite of polyaniline and poly (vinyl alcohol) with a capacity of detecting low humidity. Sens. Actuators, B, 2012, 143, P. 7–12.

19. Sajjan K.C., Roy A.S., Parveen A., Khasim S. Analysis of DC and AC properties of a humidity sensor based on polyaniline-chromium oxide composites. J Mater Sci: Mater Electron., 2014, 25, P. 1237–1243.

20. Nagaraju S.C., Aashis S. Roy., Prasanna Kumar J.B., Anilkumar K.R., Ramagopal G. Humidity sensing properties of surface modified Polyaniline metal oxide composites. J. Eng., 2014, 8 pages.

21. Vlazan P., Ursu D.H., Moisesc C.I., Miron I., Sfirloaga P., Rusu E. Structural and electrical properties of TiO2/ZnO core-shell nanoparticles synthesized by hydrothermal method. Mater. Charact., 2015, 101, P. 153–158.

22. Marinel S., Choi D.H., Heuguet R., Agarval D., Lanagan M. Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int., 2013, 39, P. 299–306.

23. Kotresh S., Ravikiran Y.T., Vijayakumari S.C., Raj Prakash H.G., Thomas S. Polyaniline niobiumpentoxide composite as humidity sensor at room temperature. Adv. Mater. Lett., 2015, 6, P. 641–645.

24. Ba-Abbad M.M., Kadhum A.A.H., Abu B.M., Takriff M.S., Sopian K. Synthesis and catalytic activity of TiO2 nanoparticles for photo- chemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci., 2012, 7, P. 4871–4888.

25. Quillard S., Louarn G., Lefrant S., MacDiarmid A.G. Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B: Condens. Matter., 1994, 50, P. 12496–12508.

26. Wang P.C., Dan Y., Liu L.H. Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped Polyaniline nanofibers. Mater. Chem. Phys., 2014, 144, P. 155–161.

27. Nasirian S., Moghaddam H.M. Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite. Int. J. Hydrogen Energ., 2014, 89, P. 630–642.

28. Ravikiran Y.T., Kotresh S., Vijayakumari S.C., Thomas S. Liquid petroleum gas sensing performance of polyaniline carboxymethyl cellulose composite at room temperature. Curr. Appl. Phys., 2014, 14, P. 960–964.

29. Nasirin S., Moghaddam H.M. Effect of different titania phases on the hydrogen gas sensing features of polyaniline/TiO2 nanocomposite. Polymer, 2014, 55, P. 1866–1874.

30. Li X., Chen W., Bian C., He J., Xu N., Xue G. Surface modification of TiO2 nanoparticles by polyaniline. Appl. Surf. Sci., 2003, 217, P. 16–22.

31. Patterson A.L. The scherror formula for x-ray particle size determination. Phys. Rev. B, 1939, 56, P. 978–982.

32. Marija B.R., Milica V.M., Dejan S.M., Edin H.S., Gordana N.C.M., Maja M.R., Zoran V.S. Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties. Surf. Coat. Technol., 2015, 278, P. 38–47.

33. Mendelson M.I. Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc., 1969, 52, P. 443–446.

34. Sen T., Shimpi N.G., Mishra S., Sharma R. Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuat. B, 2014, 190, P. 120–126.

35. Lin W.D., Chang H.M., Wu R.J. Applied novel sensing material graphene/Polypyrrole for humidity sensor. Sens. Actuat. B, 2013, 181, P. 326–331.

36. Qi Q., Zhang T., Wang S., Zheng X. Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuat. B, 2009, 137, P. 649–655.

37. Zhang Y., Zheng X., Zhang T., Gong L., Dai S., Chen Y. Humidity sensing properties of the sensor based on Bi0.5K0.5TiO3 powder. Sens. Actuat. B, 2010, 147, P. 180–184.


Review

For citations:


Kotresh S., Ravikiran Y.T., Raj Prakash N.G., Vijaya Kumari S.C. Polyaniline-Titanium dioxide composite as humidity sensor at room temperature. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(4):732-739. https://doi.org/10.17586/2220-8054-2016-7-4-732-739

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)