Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Роль когерентности в явлениях переноса электрона в природных биохимических наносистемах

Аннотация

Рассмотрено влияние оптической когерентности и колебательной диссипации в белковое окружение на эффективность переноса электрона в реакционном центре пурпурных бактерий. Для электронных состояний донора и акцептора электрона использована модель одномерных гармонических осцилляторов; колебательная динамика в диссипативной среде описана в рамках теории Редфилда. Показано, что усредненная по времени эффективность переноса электрона практически не зависит от степени когерентности исходного состояния, поскольку когерентность увеличивает вероятность как прямого, так и обратного процесса. В то же время, эффективность переноса электрона тем больше, чем сильнее взаимодействие конечного состояния с белком. Этот результат показывает, что путем тонко настроенной диссипации белковое окружение может увеличивать эффективность квантового транспорта (переноса) в биохимических системах

Об авторах

В. В. Еремин
Московский государственный университет им. М. В. Ломоносова
Россия

Химический факультет

Москва



И. О. Глебов
Московский государственный университет им. М. В. Ломоносова
Россия

Химический факультет

Москва



В. В. Поддубный
Московский государственный университет им. М. В. Ломоносова
Россия

Химический факультет

Москва



Список литературы

1. Lloyd S. Quantum coherence in biological systems // J. Phys.: Conf. Ser. — 2011. — V. 302. — P. 012037.

2. Blankenship R.E. Molecular mechanisms of photosynthesis. Blackwell Science, London, 2009. — 321 p.

3. Engel G.S., Calhoun T.R., et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems // Nature. — 2007. — V. 446. — P. 782–786.

4. Fransted K.A., Caram J.R., Hayes D., Engel G.S. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control // J. Chem. Phys. — 2012. — V. 137. — P. 125101.

5. Lee H., Cheng Y.-C., Fleming G.R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence // Science. — 2007. — V. — 316. — P. 1462–1465.

6. Collini E., Wong C. Y., et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature // Nature. — 2010. — V. 463. — P. 644–647.

7. Harel E., Engel G.S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2) // Proc. Natl. Acad. Sci. — 2012. — V. 109, No. 3. — P. 706–711.

8. Calhoun T.R., Ginsberg N.S., et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II // J. Phys. Chem. B. — 2009. — V. 113, No. 51. — P. 16291–16295.

9. Panitchayangkoon G., Hayes D., et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature // Proc. Natl. Acad. Sci. — 2010. — V. 107, No. 29. — P. 12766–12770.

10. Kassal I., Yuen-Zhou J., Rahimi-Keshari S. Does coherence enhance transport in photosynthesis? // 2012. — arXiv:1210.5022.

11. Ishizaki A., Fleming G.R. Quantum coherence in photosynthetic light harvesting // Annu. Rev. Condens. Matter Phys. — 2012. — V. 3. — P. 333–361.

12. Grover L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack // Phys. Rev. Lett. — 1997. — V. 79, No. 2. — P. 325–328.

13. Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A. Environment-assisted quantum walks in photosynthetic energy transfer // J. Chem. Phys. — 2008. — V. 129. — P. 174106.

14. Panitchayangkoon G., Voronine D.V., et al. Direct evidence of quantum transport in photosynthetic lightharvesting complexes // Proc. Natl. Acad. Sci. — 2011. — V. 108, No. 52. — P. 20908–20912.

15. Kassal I., Aspuru-Guzik A. Environment-assisted quantum transport in ordered systems // New J. Phys. — 2012. — V. 14. — P. 053041.

16. Rebentrost P., Mohseni M., et al. Environment-assisted quantum transport // New J. Phys. — 2009. — V. 11, No. 3. — P. 033003.

17. Frolov D., Wakeham M.C., et al. Investigation of B-branch electron transfer by femtosecond time resolved spectroscopy in a Rhodobacter sphaeroides reaction centre that lacks the QA ubiquinone // Biochimica et Biophysica Acta. — 2005. — V. 1707. — P. 189–198а.

18. Yakovlev A.G., Shkuropatov A.Y., Shuvalov V.A. Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers // FEBS Letters. — 2000. — V. 466. — P. 209–212.

19. Yakovlev A.G., Shkuropatov A.Y., Shuvalov V.A. Nuclear Wave Packet Motion between P* and P+BA− Potential Surfaces with a Subsequent Electron Transfer to HA in Bacterial Reaction Centers at 90 K. Electron Transfer Pathway // Biochemistry. — 2002. — V. 41. — P. 14019–14027

20. Глебов И.О., Еремин В.В. Новый cпоcоб pаcчета параметров диссипации в сверxбыстрых биохимических реакциях по данным о структуре белкового окружения // Биофизика. — 2012. — Т. 57, № 4. — С. 589–597.

21. Глебов И.О., Еремин В.В. Влияние диссипации на колебательную динамику в системе двух взаимодействующих электронных состояний // Ж. физ. химии. — 2008. — Т. 82, № 4. — С. 684–689.

22. Redfield A.G. The Theory of Relaxation Processes // Adv. Magn. Res. — 1965. — V. 1. — P. 1–8.


Рецензия

Для цитирования:


Еремин В.В., Глебов И.О., Поддубный В.В. Роль когерентности в явлениях переноса электрона в природных биохимических наносистемах. Наносистемы: физика, химия, математика. 2013;4(1):130-138.

For citation:


Eremin V.V., Glebov I.O., Poddubniy V.V. The role of coherency in the phenomena of electron transfer in biochemical nanosystems in the Nature. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(1):130-138. (In Russ.)

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)