Investigation of interactions of gaseous titanium tetrachloride with water aerosol by in-situ small-angle X-Ray scattering using sincrotrone irradiation
Abstract
The process of heterogeneous hydrolysis of titanium tetrachloride vapor onto aerosol water droplets is studied for the first time using in situ small-angle X-ray scattering technique allowed to suggest a new model of the process
About the Authors
A. B. TarasovRussian Federation
Department of Materials Science, Laboratory of Solid State Ionics
Moscow
Chernogolovka
G. B. Trusov
Russian Federation
Chemistry Department
Moscow
A. Yu. Gruzinov
Russian Federation
Moscow
E. A. Goodilin
Russian Federation
Department of Materials Science, Chemistry Department
Moscow
A. V. Zabelin
Russian Federation
Moscow
References
1. Shimizu Y., Takao Y., Egashira M. Detection of freshness of fish by a semiconductive Ru/TiO2 sensor // Journal of the electrochemical society. — 1988. — V. 135, No. 10. — P. 2539–2540.
2. Murakata T., Takekoshi K., Sato S. Electrochemical properties of TiO2 coated ITO electrodes prepared by sol-gel method // Journal of chemical engineering of Japan. — 1999. — V. 32, No. 6. — P. 825–829.
3. O’Regan B., Graetzel M. low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films // Nature. — 1991. — V. 353, No. 24. — P. 737–740.
4. Zaspalis V.T., Vanpraag W., et al. Reactor studies using vanadia modified titania and alumina catalytically active membranes for the reduction ofnitrogen-oxidewith ammonia // Applied catalysis. — 1991. — V. 74, No. 2. — P. 249–260.
5. Bamwenda G.R., Tsubota S., Nakamura T., Haruta M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation // Catalysis Letters. — 1997. — V. 44, No. 1– 2. — P. 83–87.
6. Randon J., Guerrin J.-F., Rocca J.-L. Synthesis of titania monoliths for chromatographic separations // Journal of Chromatography A. — 2008. — V. 1214. — P. 183–186.
7. Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode // Nature. — 1972. — V. 238. — P. 37–38.
8. Boissiere C., Grosso D., et al. First in-situ SAXS studies of the mesostructuration of spherical silica and titania particles during spray-drying process // Chem. Commun. — 2003. — V. 9. — P. 2798–2799.
9. Kallala M., Sanchez C., Cabane B. Structures of inorganic polymers in sol-gel processes based on titanium oxide // Physical Review E. — 1993. — V. 48, No. 5. — P. 3692–3704.
10. Jalava J.-P., Hiltunen E., et al. Taavitsainen, Structural Investigation of Hydrous Titanium Dioxide Precipitates and Their Formation by Small-Angle X-ray Scatterin // Ind. Eng. Chem. Res. — 2000. — V. 39. — P. 349–361.
11. Zhang G., Roy B.K., Allard L.F., Chow J. Titanium Oxide Nanoparticles Precipitated from Low-Temperature Aqueous Solutions: I. Nucleation, Growth, and Aggregation // J. Am. Ceram. Soc. — 2008. — V. 91, No. 12. — P. 3875–3882.
12. Stotzel J., Lutzenkirchen-Hecht D., et al. QEXAFS and UV/Vis Simultaneous Monitoring of the TiO2- Nanoparticles Formation by Hydrolytic Sol-Gel Route // Journal of Physical Chemistry C. — 2010. — V. 114, No. 14. — P. 6228–6236.
13. Sen D., Spalla O., et al. Slow Drying of a Spray of Nanoparticles Dispersion. In Situ SAXS Investigation // Langmuir. — 2007. — V. 23, No. 8. — P. 4297.
14. Shyjumon I., Rappolt M. et al. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering // Rev. Sci. Instrum. — 2008. — V. 79. — P. 043905.
15. Sorensen C.M. Light Scattering by Fractal Aggregates // A Review. Aerosol. Sci. Technol. — 2001. — V. 35. — P. 648–687.
Review
For citations:
Tarasov A.B., Trusov G.B., Gruzinov A.Yu., Goodilin E.A., Zabelin A.V. Investigation of interactions of gaseous titanium tetrachloride with water aerosol by in-situ small-angle X-Ray scattering using sincrotrone irradiation. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(1):139-147. (In Russ.)