La and Co-based materials for ammonia decomposition: activity, stability and structural changes
https://doi.org/10.17586/2220-8054-2025-16-4-498-509
Abstract
The La0.9Sr0.1Sc0.9Co0.1O3-δ (LS) and La0.9Sr0.1CoO3-δ (LC) phases and composite materials based on them were synthesized. There are data in the literature on the activity of pure or modified forms of LC in ammonia decomposition, but there are no data on the activity of the LS phase and LS–LC composites. Therefore, the stability and activity of LS–LC composites and initial LS and LC in ammonia decomposition were investigated. The best result in the decomposition of ammonia at 700◦C and WHSV of 60000 ml NH3·g-1cat ·h-1 shows LC – 99%, the worst LS – 80%. Under the same conditions, the activity of samples LC, 40LS–60LC and 50LS–50LC remains unchanged for 40 hours. It was found that during ammonia decomposition, the LC phase decomposes to form cobalt and La(OH)3 nanoparticles, but the LS phase does not undergo significant changes, which is confirmed by X-ray diffraction, IR spectroscopy, Raman spectroscopy and TEM.
About the Authors
V. A. BorisovRussian Federation
Vadim A. Borisov
Neftezavodskaya st., 54, Omsk, 644040, Russia
Z. A. Fedorova
Russian Federation
Zaliya A. Fedorova
Lavrentiev Ave., 5, Novosibirsk, 630090, Russia
Z. N. Ichetovkin
Russian Federation
Zakhar N. Ichetovkin - Department of Technology of Inorganic Materials and Electrochemical Production
Moskovskaya st., 36, Kirov, 610000, Russia
Kutateladze st., 18, Novosibirsk, 630128, Russia
E. Y. Gerasimov
Russian Federation
Evgeniy Y. Gerasimov
Lavrentiev Ave., 5, Novosibirsk, 630090, Russia
D. A. Shlyapin
Russian Federation
Dmitry A. Shlyapin
Lavrentiev Ave., 5, Novosibirsk, 630090, Russia
A. Y. Stroeva
Russian Federation
Anna Y. Stroeva - Department of Technology of Inorganic Materials and Electrochemical Production
Moskovskaya st., 36, Kirov, 610000, Russia
V. L. Temerev
Russian Federation
Victor L. Temerev
Neftezavodskaya st., 54, Omsk, 644040, Russia
A. B. Arbuzov
Russian Federation
Alexey B. Arbuzov
Neftezavodskaya st., 54, Omsk, 644040, Russia
S. V. Tsybulya
Russian Federation
Sergey V. Tsybulya
Lavrentiev Ave., 5, Novosibirsk, 630090, Russia
P. V. Snytnikov
Russian Federation
Pavel V. Snytnikov
Lavrentiev Ave., 5, Novosibirsk, 630090, Russia
A. V. Kuzmin
Russian Federation
Anton V. Kuzmin - Department of Technology of Inorganic Materials and Electrochemical Production
Moskovskaya st., 36, Kirov, 610000, Russia
References
1. Abe J.O., Popoola A.P.I., Ajenifuja E., Popoola O.M. Hydrogen energy, economy and storage: Review and recommendation. Int J Hydrogen Energy., 2019, 44(29), P. 15072–15086.
2. Yan Z., Yin K., Xu M., Fang N., Yu W., Chu Y., et al. Photocatalysis for synergistic water remediation and H2 production: A review. Chem Eng J., 2023, 472, P. 145066.
3. Aravindan M., Praveen Kumar G. Hydrogen towards sustainable transition: A review of production, economic, environmental impact and scaling factors. Results Eng., 2023, 20, P. 101456.
4. El-Shafie M. Hydrogen production by water electrolysis technologies: A review. Results Eng., 2023, 20, P. 101426.
5. Egerer J., Grimm V., Niazmand K., Runge P. The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany.” Appl Energy, 2023, 334, P. 120662.
6. Wang B., Ni M., Jiao K. Green ammonia as a fuel. Sci Bull., 2022, 67(15), P. 1530–1534.
7. Jiang L., Fu X. An Ammonia–Hydrogen Energy Roadmap for Carbon Neutrality: Opportunity and Challenges in China. Engineering, 2021, 7(12), P. 1688–1691.
8. Borisov V.A., Sidorchik I.A., Temerev V.L., Simunin M.M., Leont’eva N.N., Muromtsev I.V., et al. Ru-Ba/ANF catalysts for ammonia decomposition: Support carbonization influence. Int J Hydrogen Energy, 2023, 48(59), P. 22453–22461.
9. Hayashi F., Toda Y., Kanie Y., Kitano M., Inoue Y., Yokoyama T., et al. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e-. Chem Sci., 2013, 4(8), P. 3124–3130.
10. Kocer T., Oztuna F.E.S., Kurtoglu S.F., Unal U., Uzun A. Graphene aerogel-supported ruthenium nanoparticles for COx-free hydrogen production ˘ from ammonia. Appl Catal A Gen., 2021, 610, P. 117969.
11. Borisov V.A., Iost K.N., Temerev V.L., Simunin M.M., Leont’eva N.N., Mikhlin Y.L., et al. Ammonia decomposition Ru catalysts supported on alumina nanofibers for hydrogen generation. Mater Lett., 2022, 306, P. 130842.
12. Borisov V.A., Iost K.N., Temerev V.L., Leont’eva N.N., Muromtsev I.V., Arbuzov A.B., et al. The Influence of the Specific Surface Area of the Carbon Support on the Activity of Ruthenium Catalysts for the Ammonia-Decomposition Reaction. Kinet Catal., 2018, 59(2), P. 136–142.
13. Borisov V.A., Iost K.N., Petrunin D.A., Temerev V.L., Muromtsev I.V., Arbuzov A.B., et al. Effect of the Modifier on the Catalytic Properties and Thermal Stability of Ru–Cs(Ba)/Sibunit Catalyst for Ammonia Decomposition. Kinet Catal., 2019, 60, P. 372–379.
14. Yamazaki K., Matsumoto M., Ishikawa M., Sato A. NH3 decomposition over Ru/CeO2-PrOx catalyst under high space velocity conditions for an on-site H2 fueling station. Appl Catal B Environ, 2023, 325, P. 122352.
15. Le T.A., Do Q.C., Kim Y., Kim T.-W., Chae H.-J. A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean J. Chem Eng., 2021, 38(6), P. 1087–1103.
16. Sun S., Jiang Q., Zhao D., Cao T., Sha H., Zhang C., et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production. Renew Sustain Energy Rev., 2022, 169, P. 112918.
17. Bell T.E., Torrente-Murciano L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top Catal., 2016, 59(15), P. 1438–1457.
18. Lucentini I., Garcia X., Vendrell X., Llorca J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind Eng Chem Res., 2021 May, 60(51), P. 18560–18611.
19. Yakovenko R.E., Krasnyakova T.V., Saliev A.N., Shilov M.A., Volik A.V., Savost’yanov A.P., et al. Ammonia Decomposition over Cobalt-Based Silica-Supported Fischer-Tropsch Synthesis Catalysts. Kinet Catal., 2023, 64(2), P. 180–190.
20. Han X., Hu M., Yu J., Xu X., Jing P., Liu B., et al. Dual confinement of LaCoOx modified Co nanoparticles for superior and stable ammonia decomposition. Appl Catal B Environ., 2023, 328, P. 122534.
21. Podila S., Alhamed Y.A., AlZahrani A.A., Petrov L.A. Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems. Int. J. Hydrogen Energy., 2015, 40(45), P. 15411–15422.
22. Podila S., Driss H., Zaman S.F., Alhamed Y.A., AlZahrani A.A., Daous M.A., et al. Hydrogen generation by ammonia decomposition using Co/MgO–La2O3 catalyst: Influence of support calcination atmosphere. J. Mol. Catal. A Chem., 2016, 414, P. 130–139.
23. Chandrappa S.G., Moni P., Chen D., Karkera G., Prakasha K.R., Caruso R.A., et al. The influence of ruthenium substitution in LaCoO3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries. J Mater Chem A. 2020, 8(39), P. 20612–20620.
24. Onrubia-Calvo J.A., Pereda-Ayo B., De-La-Torre U., Gonzalez-Velasco J.R. Key factors in Sr-doped LaBO ´ 3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl Catal B Environ., 2017, 213, P. 198–210.
25. Wei Y., Ni L., Li M., Zhao J. Acid treated Sr-substituted LaCoO3 perovskite for toluene oxidation. Catal Commun., 2021, 155, P. 106314.
26. Wang S., Zhu J., Yang J., Li M., Zhu Y. Influence of LaCoO3 perovskite oxides prepared by different method on the catalytic combustion of ethyl acetate in the presence of NO. Appl Surf Sci., 2023, 623, P. 157045.
27. Ao R., Ma L., Guo Z., Liu H., Yang J., Yin X., et al. Effects of the preparation method on the simultaneous catalytic oxidation performances of LaCoO3 perovskites for NO and Hg0. Fuel, 2021, 305, P. 121617.
28. Li P., Chen X., Li Y., Schwank J.W. Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation. Catal Today, 2021, 364, P. 7–15.
29. Yan F., Li P., Zhang X. CO and C3H6 oxidation over La0.9Sr0.1CoO3 catalysts: Influence of preparation solvent. Korean J Chem Eng., 2021, 38(5), P. 945–951.
30. Zhao D., Song H., Liu J., Jiang Q., Li X., Xie W., et al. Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process. Catalysts, 2022, 431(6), P. 128528.
31. Saifei Wang, Yiyuan Zhang, Peiqi Chu, Jie Liu, Man Wang, Peng Zhang, et al. Different Active Sites of LaCoO3 and LaMnO3 for CH4 Oxidation by Regulation of Precursor’s Ion Concentration. Glob Environ Eng., 2020 Sep, 7(1 SE-Articles), P. 28–39.
32. Xie W., Xu G., Zhang Y., Yu Y., He H. Mesoporous LaCoO3 perovskite oxide with high catalytic performance for NOx storage and reduction. J Hazard Mater., 2022, 431, P. 128528.
33. Hu X.-C., Wang W.-W., Jin Z., Wang X., Si R., Jia C.-J. Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia. J. Energy Chem., 2019, 38, P. 41–49.
34. Wojcik A., Middleton H., Damopoulos I., Van herle J. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources., 2003, 118(1), P. 342–348.
35. Yang J., Molouk A.F.S., Okanishi T., Muroyama H., Matsui T., Eguchi K. Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3-δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells. ACS Appl Mater Interfaces., 2015 Apr, 7(13), P. 7406–7412.
36. Plekhanov M.S., Kuzmin A.V., Tropin E.S., Korolev D.A., Ananyev M.V., New mixed ionic and electronic conductors based on LaScO3: Protonic ceramic fuel cells electrodes. J. Power Sources., 2020, 449, P. 227476.
37. Wang B., Li T., Gong F., Othman M.H.D., Xiao R. Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell – a comprehensive review. Fuel Process Technol., 2022, 235, P. 107380.
38. Rahman M.M., Abdalla A.M., Omeiza L.A., Raj V., Afroze S., Reza M.S., et al. Numerical Modeling of Ammonia-Fueled Protonic-Ion Conducting Electrolyte-Supported Solid Oxide Fuel Cell (H-SOFC). A Brief Review., 2023, 11(9), P. 2728.
39. Mehdi A.M., Hussain A., Khan M.Z., Hanif M.B., Song R.-H., Kazmi W.W., et al. Progress and prospects in direct ammonia solid oxide fuel cells. Russ Chem Rev., 2023, 92(11), RCR5098.
40. Quach T.-Q., Sang Kim Y., Keun Lee D., Young Ahn K., Lee S., Bae Y. Thermal management of Ammonia-fed Solid oxide fuel cells using a novel alternate flow interconnector. Energy Convers Manag., 2023, 291, P. 117248.
41. Quach T.-Q., Lee D., Giap V.-T., Kim Y.S., Lee S., Ahn K.Y. Energetic and economic analysis of novel cascade systems for ammonia-fed solid oxide fuel cell. Int J Hydrogen Energy, 2024, 67, P. 1080–96.
42. Quach T.-Q., Giap V.-T., Keun Lee D., Pineda Israel T., Young Ahn K. High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation. Appl Energy, 2022, 324, P. 119718.
43. Kuzmin A.V., Stroeva A.Y., Gorelov V.P., Novikova Y.V., Lesnichyova A.S., Farlenkov A.S., et al. Synthesis and characterization of dense protonconducting La1-xSrxScO3-α ceramics. Int J Hydrogen Energy, 2019, 44(2), P. 1130–1138.
44. Gwon O., Yoo S., Shin J., Kim G. Optimization of La1-xSrxCoO3-δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties. Int J Hydrogen Energy, 2014, 39(35), P. 20806–20811.
45. Stroeva A.Y., Ichetovkin Z.N., Plekhanov M.S., Borisov V.A., Shlyapin D.A., Snytnikov P.V., et al. The Lanthanum-Scandate- and LanthanumCobaltite-Based Composite Materials for Proton–Ceramic Electrochemical Devices. Russ. J. Electrochem, 2024, 60(1), P. 36–43.
46. Song Y., Li H., Xu M., Yang G., Wang W., Ran R., et al. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Small, 2020 Jul, 16(28), P. 2001859.
47. Zhang Z.-S., Fu X.-P., Wang W.-W., Jin Z., Song Q.-S., Jia C.-J. Promoted porous Co3O4–Al2O3 catalysts for ammonia decomposition. Sci China Chem., 2018, 61(11), P. 1389–1398.
48. Huang C., Li H., Yang J., Wang C., Hu F., Wang X., et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition. Appl Surf Sci., 2019, 478, P. 708–716.
49. Duan X., Ji J., Yan X., Qian G., Chen D., Zhou X. Understanding Co-Mo Catalyzed Ammonia Decomposition: Influence of Calcination Atmosphere and Identification of Active Phase. Chem.Cat.Chem., 2016 Mar, 8(5), P. 938–945.
50. Breucop J.D. In Situ Raman Spectroscopy of Lanthanum- Strontium-Cobaltite Thin Films. By Department of Materials Science and Engineering at the Massachusetts Institute of Technology. 2012, 36 p.
51. Dragan M., Enache S., Varlam M., Petrov K. Perovskite-Type Lanthanum Cobaltite LaCoO3: Aspects of Processing Route toward Practical Applications. In: Yıldız Y, Manzak A, editors. Rijeka: IntechOpen, 2019, Ch. 6.
52. Wandekar R.V., Wani B.N., Bharadwaj S.R. Crystal structure, electrical conductivity, thermal expansion and compatibility studies of Co-substituted lanthanum strontium manganite system. Solid State Sci., 2009, 11(1), P. 240–250.
53. Petrov A.N., Kononchuk O.F., Andreev A.V., Cherepanov V.A., Kofstad P. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ionics., 1995, 80(3), P. 189–199.
54. Li G., Yu X., Yin F., Lei Z., Zhang H., He X. Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts. Catal Today., 2022, 402, P. 45–51.
55. Zhang W.-W., Povoden-Karadeniz E., Shang Y., Hendriksen P.V., Chen M. Phase equilibria and defect chemistry of the La–Sr–Co–O system. J Eur Ceram Soc., 2023, 43(10), P. 4419–4430.
Supplementary files
![]() |
1. Supplementary Materials | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(270KB)
|
Indexing metadata ▾ |
Review
For citations:
Borisov V.A., Fedorova Z.A., Ichetovkin Z.N., Gerasimov E.Y., Shlyapin D.A., Stroeva A.Y., Temerev V.L., Arbuzov A.B., Tsybulya S.V., Snytnikov P.V., Kuzmin A.V. La and Co-based materials for ammonia decomposition: activity, stability and structural changes. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):498-509. https://doi.org/10.17586/2220-8054-2025-16-4-498-509