Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of nanoscale water media confinement on the approach curve in SICM

https://doi.org/10.17586/2220-8054-2025-16-6-770-777

Abstract

The features of the ion current dependence on distance when a glass nanopipette with an aperture diameter of ∼100 nm approaches the surface of a solid dielectric in a scanning ion conductivity microscope have been studied. A characteristic peak in the approach curve has been observed when the electrode in the nanopipette with an electrolyte is negatively biased relative to electrode in the bath, while a monotonic current decline occurs with a positive bias. To explain this unusual behavior of the ion current, the model accounting for the overlap of electric double layers and water confinement phenomenon in nanochannels and nanogaps have been proposed. The model demonstrates good agreement with the experimental data and provides a basis for quantitative assessment of surface charge at electrolyte–solid interfaces with nanometer-scale spatial sensitivity.

About the Authors

S. Yu. Lukashenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Stanislav Yu. Lukashenko



O. M. Gorbenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Olga M. Gorbenko



M. L. Felshtyn
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Mikhail L. Felshtyn



I. D. Sapozhnikov
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Ivan D. Sapozhnikov



S. V. Pichakhchi
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Stepan V. Pichakhchi



M. V. Zhukov
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Mikhail V. Zhukov



A. O. Golubok
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Alexander O. Golubok



References

1. Hansma P.K., Drake B., Marti O., Gould S.A., Prater C.B. The scanning ion-conductance microscope. Science, 1989, 243 (4891), P. 641–643.

2. Korchev Y.E., Bashford C.L., Milovanovic M., Vodyanoy I., Lab M.J. Scanning ion conductance microscopy of living cells. Biophys. J., 1997, 73 (2), P. 653–658.

3. Klenerman D., Korchev Y.E., Davis S.J. Imaging and characterisation of the surface of live cells. Curr. Opin. Chem. Biol., 2011, 15 (5), P. 696–703.

4. Rheinlaender J., Geisse N.A., Proksch R., Schaffer T.E. Comparison of scanning ion conductance microscopy with atomic force microscopy for ¨ cell imaging. Langmuir, 2011, 27 (2), P. 697–704.

5. Pleskova S.N., Bezrukova N.A., Gorshkova E.N., Bobyk S.Z., Lazarenko E.V. A study of EA.hy926 endothelial cells using atomic force and scanning ion conductance microscopy. Cell Tissue Biol., 2024, 18 (1), P. 36–44.

6. Gorelik J., Shevchuk A., Ramalho M., Elliott M., Lei C., Higgins C.F., et al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell. Proc. Natl. Acad. Sci. U.S.A., 2002, 99 (25), P. 16018–16023.

7. Gu C., et al. Scanning ion conductance microscopy of living renal epithelial cells. Kidney Int., 2002, 61 (3), P. 1250–1255.

8. Shevchuk A.I., et al. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed., 2006, 45 (14), P. 2212–2216.

9. Muhammed Y., De Sabatino M., Lazenby R.A. The heterogeneity in the response of A549 cells to toyocamycin observed using hopping scanning ion conductance microscopy. J. Phys. Chem. B, 2025, 129 (20), P. 4904–4916.

10. Pastre D., Iwamoto H., Liu J., Szabo G., Shao Z. Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy, 2001, 90, P. 13–19.

11. Novak P., Li C., Shevchuk A.I., Stepanyan R., Caldwell M., Hughes S., et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods, 2009, 6 (4), P. 279–281.

12. Page A., Perry D., Unwin P.R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A., 2017, 473, 20160889.

13. Wang X.-F., Duan Y.-F., Zhu Y.-Q., Liu Z.-J., Wu Y.-C., Liu T.-H., Zhang L., Wei J.-F., Liu G.-C. An insulin-modified pH-responsive nanopipette based on ion current rectification. Sensors, 2024, 24 (13), 4264.

14. Yingfei M., Rujia L., Xiaoyue S., Dengchao W. Quantification of asymmetric ion transport in glass nanopipettes near charged substrates. ChemElectroChem, 2021, 8, 3917.

15. Clarke R.W., Zhukov A., Richards O., Johnson N., Ostanin V., Klenerman D. Pipette–surface interaction: current enhancement and intrinsic force. J. Am. Chem. Soc., 2013, 135, 322.

16. Ushiki T., Ishizaki K., Mizutani Y., Nakajima M., Iwata F. Scanning ion conductance microscopy of isolated metaphase chromosomes in a liquid environment. Chromosome Res., 2021, 29 (1), P. 95–106.

17. Sa N., Lan W.J., Shi W., Baker L.A. Rectification of ion current in nanopipettes by external substrates. ACS Nano, 2013, 7, 272.

18. McKelvey K., Kinnear S.L., Perry D., Momotenko D., Unwin P.R. Surface charge mapping with a nanopipette. J. Am. Chem. Soc., 2014, 136, 13.

19. Lukashenko S.Yu., Gorbenko O.M., Felshtyn M.L., Sapozhnikov I.D., Kirilenko D.A., Stepan V.P., Zhukov M.V., Golubok A.O. Ionic conductivity in nanopipettes: experiment and model. Nanosyst.: Phys. Chem. Math., 2025, 16 (4), P. 441–449.

20. Tao D., Jiang L., Jin M. A method of preparation of Ag/AgCl chloride selective electrode. J. Wuhan Univ. Technol., Mater. Sci. Ed., 2018, 33, P. 767–771.

21. Cervera J., Schiedt B., Ramirez P. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett., 2005, 71, 35.

22. Apel P., Korchev Y.E., Siwy Z., Spohr R., Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res., Sect. B., 2001, 184, 337.

23. Rabinowitz J., Edwards M.A., Whittier E., Jayant K., Shepard K.L. Nanoscale fluid vortices and nonlinear electroosmotic flow drive ion current rectification in the presence of concentration gradients. J. Phys. Chem. A, 2019, 123 (38), P. 8285–8293.

24. Nitz H., Kamp J., Fuchs H. A combined scanning ion-conductance and shear-force microscope. Probe Microsc., 1998, 1, P. 187–200.

25. Laurance N. Self-diffusion of the chlorine ion in sodium chloride. Phys. Rev., 1960, 120, P. 57–62.

26. Alvarez-Quintana S., Carmona F.J., Palacio L., Hern ´ andez A., Pr ´ adanos P. Water viscosity in confined nanoporous media and flow through ´ nanofiltration membranes. Microporous Mesoporous Mater., 2020, 300, 110176.

27. Bowen W.R., Welfoot J.S. Modelling the performance of membrane nanofiltration—critical assessment and model development. Chem. Eng. Sci., 2002, 57, P. 1121–1137.

28. Wesolowska K., Koter S., Bodzek M. Modelling of nanofiltration in softening water. Desalination, 2004, 162, P. 137–151.

29. Deißenbeck F., Freysoldt C., Todorova M., Neugebauer J., Wippermann S. Dielectric properties of nanoconfined water: a canonical thermopotentiostat approach. Phys. Rev. Lett., 2021, 126 (13), 136803.

30. Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water. Science, 2018, 360 (6395), P. 1339–1342.

31. Girault H.H. Analytical and Physical Electrochemistry. EPFL Press: New York, 2004.

32. Perry D., Momotenko D., Lazenby R.A., Kang M., Unwin P.R. Characterization of nanopipettes. Anal. Chem., 2016, 88, P. 5523–5530.

33. Wright M.R. An Introduction to Aqueous Electrolyte Solutions. John Wiley & Sons: Chichester, UK, 2007.

34. Kolmogorov V.S., Erofeev A.S., Woodcock E., Efremov Y.M., Iakovlev A.P., Savin N.A., et al. Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette–sample force interactions. Nanoscale, 2021, 13 (13), P. 6558–6568.

35. Amadu M., Miadonye A. Determination of the point of zero charge pH of borosilicate glass surface using capillary imbibition method. Int. J. Chem., 2017, 9, P. 67–84.

36. Perry D., Al Botros R., Momotenko D., Kinnear S.L., Unwin P.R. Simultaneous nanoscale surface charge and topographical mapping. ACS Nano, 2015, 9, P. 7266–7276.

37. Meyers G.F., DeKoven B.M., Seitz J.T. Is the molecular surface of polystyrene really glassy? Langmuir, 1992, 8 (9), P. 2330–2335.


Supplementary files

Review

For citations:


Lukashenko S.Yu., Gorbenko O.M., Felshtyn M.L., Sapozhnikov I.D., Pichakhchi S.V., Zhukov M.V., Golubok A.O. Effect of nanoscale water media confinement on the approach curve in SICM. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):770-777. https://doi.org/10.17586/2220-8054-2025-16-6-770-777

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)