The relationship between the impregnation solution composition and the active component distribution NiMo/ZSM-23 catalysts for the plant lipids hydroprocessing
https://doi.org/10.17586/2220-8054-2025-16-6-872-886
Abstract
The nature of the interaction between metals and a catalyst support is a crucial factor in determining the dispersed state of active component phases. In this study, a series of Ni-Mo/ZSM-23 catalysts for the hydroprocessing of plant lipids was prepared by incipient wetness impregnation. The catalysts were prepared by a different sequence of metal deposition and using various complexing agents. The catalysts were investigated by a few physico-chemical methods (TPR, UV-Vis spectroscopy, XRD, TPD-NH3, Raman spectroscopy, HRTEM). It was found that the charge of the ZSM-23 zeolite surface (positive/negative) and the type of metal ions in the impregnation solution affect the formation of phases on the support surface. The use of ammonia impregnating solutions leads to the formation of phases NiO, α-NiMoO4 and β-NiMoO4. In the case of using aqueous and citrate impregnating solutions, only the formation of NiO and β-NiMoO4 phases is observed.
About the Authors
K. S. KovalevskayaRussian Federation
Ksenia S. Kovalevskaya
Akademika Lavrentieva av. 5, 630090, Novosibirsk
R. G. Kukushkin
Russian Federation
Roman G. Kukushkin
Akademika Lavrentieva av. 5, 630090, Novosibirsk
O. O. Zaikina
Russian Federation
Olesya O. Zaikina
Akademika Lavrentieva av. 5, 630090, Novosibirsk
O. A. Bulavchenko
Russian Federation
Olga A. Bulavchenko
Akademika Lavrentieva av. 5, 630090, Novosibirsk
V. A. Yakovlev
Russian Federation
Vadim A. Yakovlev
Akademika Lavrentieva av. 5, 630090, Novosibirsk
References
1. Yeletsky P.M., Kukushkin R.G., Yakovlev V.A., Chen B.H. Recent Advances in One-Stage Conversion of Lipid-Based Biomass-Derived Oils into Fuel Components — Aromatics and Isomerized Alkanes. Fuel, 2020, 278 (1), 118255.
2. Kordulis C., Bourikas K., Gousi M., Kordouli E., Lycourghiotis A. Development of Nickel Based Catalysts for the Transformation of Natural Triglycerides and Related Compounds into Green Diesel: A Critical Review. Appl. Catal. B, 2016, 181, P. 156–196.
3. Zhou Y., Remon J., Jiang Z., Matharu A.S., Hu C. Tuning the Selectivity of Natural Oils and Fatty Acids/Esters Deoxygenation to Biofuels and ´ Fatty Alcohols: A Review. Green Energy and Environment, 2023, 8 (3), P. 722–743.
4. Zhang M., Chen Y., Wang L., Zhang Q., Tsang C.W., Liang C. Shape Selectivity in Hydroisomerization of Hexadecane over Pt Supported on 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48. Ind. Eng. Chem. Res., 2016, 55 (21), P. 6069–6078.
5. Gao S.B., Zhao Z., Lu X.F., Chi K.B., Duan A.J., Liu Y.F., Meng X.B., Tan M.W., Yu H.Y., Shen Y.G., Li M.C. Hydrocracking Diversity in N-Dodecane Isomerization on Pt/ZSM-22 and Pt/ZSM-23 Catalysts and Their Catalytic Performance for Hydrodewaxing of Lube Base Oil. Pet. Sci., 2020, 17 (6), P. 1752–1763.
6. Romero D., Rohling R., Meng L., Rigutto M., Hensen E.J.M. Shape Selectivity in Linear Paraffins Hydroconversion in 10-Membered-Ring Pore Zeolites. J. Catal., 2021, 394, P. 284–298.
7. Raikwar D., Munagala M., Majumdar S., Shee D. Hydrodeoxygenation of Guaiacol over Mo, W and Ta Modified Supported Nickel Catalysts. Catal. Today, 2019, 325, P. 117–130.
8. Yang Y., Wang Q., Zhang X., Wang L., Li G. Hydrotreating of C18 Fatty Acids to Hydrocarbons on Sulphided NiW/SiO2-Al2O3. Fuel Processing Technology, 2013, 116, P. 165–174.
9. Zhang Z., Bi G., Zhang H., Zhang A., Li X., Xie J. Highly Active and Selective Hydrodeoxygenation of Oleic Acid to Second Generation Bio-Diesel over SiO2-Supported CoxNi1−xP Catalysts. Fuel, 2019, 247, P. 26–35.
10. Zheng Y., Wang J., Liu C., Lu Y., Lin X., Li W., Zheng Z. Efficient and Stable Ni-Cu Catalysts for Ex Situ Catalytic Pyrolysis Vapor Upgrading of Oleic Acid into Hydrocarbon: Effect of Catalyst Support, Process Parameters and Ni-to-Cu Mixed Ratio. Renew Energy, 2020, 154, P. 797–812.
11. Cao X., Long F., Zhai Q., Liu P., Xu J., Jiang J. Enhancement of Fatty Acids Hydrodeoxygenation Selectivity to Diesel-Range Alkanes over the Supported Ni-MoOx Catalyst and Elucidation of the Active Phase. Renew Energy, 2020, 162, P. 2113–2125.
12. Brunelle J.P. Preparation of Catalysts by Metallic Complex Adsorption on Mineral Oxides. Pure & Appl. Chem., 1978, 50, P. 1211–1229.
13. Kyriakopoulos J., Panagiotou G., Petsi T., Bourikas K., Kordulis C., Lycourghiotis A. The Influence of Impregnation Temperature on the PZC of Titania and the Loading of Ni upon Preparation of Ni/TiO2 Catalysts. Stud. Surf. Sci. Catal., 2010, 175, P. 643–646.
14. Hao X., Quach L., Korah J., Spieker W.A., Regalbuto J.R. The Control of Platinum Impregnation by PZC Alteration of Oxides and Carbon. J. Mol. Catal. A Chem., 2004, 219 (1), P. 97–107.
15. Li K., Wang R., Chen J. Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts. Energy and Fuels, 2011, 25 (3), P. 854–863.
16. Wang X., Zhao Z., Chen Z., Li J., Duan A., Xu C., Gao D., Cao Z., Zheng P., Fan J. Effect of Synthesis Temperature on Structure-ActivityRelationship over NiMo/γ-Al2O3 Catalysts for the Hydrodesulfurization of DBT and 4.6-DMDBT. Fuel Processing Technology, 2017, 161, P. 52–61.
17. Kordouli E., Sygellou L., Kordulis C., Bourikas K., Lycourghiotis A. Probing the Synergistic Ratio of the NiMo/γ-Al2O3 Reduced Catalysts for the Transformation of Natural Triglycerides into Green Diesel. Appl. Catal. B, 2017, 209, P. 12–22.
18. Qu L., Zhang W., Kooyman P.J., Prins R. MAS NMR, TPR, and TEM Studies of the Interaction of NiMo with Alumina and Silica-Alumina Supports. J. Catal., 2003, 215 (1), P. 7–13.
19. Liu Z., Han W., Hu D., Sun S., Hu A., Wang Z., Jia Y., Zhao X., Yang Q. Effects of Ni–Al2O3 Interaction on NiMo/Al2O3 Hydrodesulfurization Catalysts. J. Catal., 2020, 387, P. 62–72.
20. Nepomnyashchiy A.A., Buluchevskiy E.A., Lavrenov A.V., Yurpalov V.L., Gulyaeva T.I., Leont’eva N.N., Talzi V.P. Hydrodeoxygenation of Vegetable Oil on NiMoS/WO3—Al2O3 Catalysts. Russian J. of Applied Chemistry, 2017, 90 (12), P. 1944–1952.
21. Salomatina A.A., Nadeina K.A., Klimov O.V., Danilova I.G., Gerasimov E.Y., Prosvirin I.P., Pakharukova V.P., Chesalov Y.A., Noskov A.S. Influence of Ni/Mo Ratio on Structure Formation of Ni-Mo Complex Compounds in NiMo/Al2O3 Catalysts for Selective Diene Hydrogenation. Energy and Fuels, 2022, 36 (24), P. 15088–15099.
22. Kordouli E., Pawelec B., Kordulis C., Lycourghiotis A., Fierro J.L.G. Hydrodeoxygenation of Phenol on Bifunctional Ni-Based Catalysts: Effects of Mo Promotion and Support. Appl. Catal. B, 2018, 238, P. 147–160.
23. Kohler S.D., Ekerdt J.G., Kim D.S., Wachs I.E. Relationship between Structure and Point of Zero Surface Charge for Molybdenum and Tungsten Oxides Supported on Alumina. Catal. Letters, 1992, 16, P. 231–239.
24. Subramanian S., Noh J.S., Schwarz J.A. Determination of the Point of Zero Charge of Composite Oxides. J. Catal., 1988, 114 (2), P. 433–439.
25. Shinkevich K.S., Kukushkin R.G., Bulavchenko O.A., Zaikina O.O., Alekseeva M.V., Ruvinskiy P.S., Yakovlev V.A. Influence of the Support on Activity and Stability of Ni and Ni-Mo Catalysts in the Hydroprocessing of Fatty Acids into Motor Fuels Components. Appl. Catal. A Gen., 2022, 644, 118801.
26. Kovalevskaya K.S., Kukushkin R.G., Zaikina O.O., Bulavchenko O.A., Larina T.V., Golubev I.S., Yakovlev V.A. NiMo/ZSM-23 Catalysts for Deoxygenation and Isomerization of C16-C18 Fatty Acids to Sustainable Diesel and Jet Fuel Components. Fuel, 2025, 383.
27. Sukhorukov D.A., Kukushkin R.G., Alekseeva (Bykova) M.V., Bulavchenko O.A., Zaikina O.O., Revyakin M.E., Kazakov M.O., Yakovlev V.A. Upgrading of Sewage Sludge-Derived Pyrolysis Oil via Hydrotreatment over NiMo-Based Catalysts. Fuel, 2024, 359, 130383.
28. Tobias R.S. Infrared and Raman Spectra of Inorganic and Coordination Compounds (Nakamoto, Kazuo). J. Chem. Educ., 1979, 56 (5), A209.
29. Jeziorowski H., Knozinger H. Raman and Ultraviolet Spectroscopic Characterization of Molybdena on Alumina Catalysts. ¨ J. of Physical Chemistry, 1979, 83 (9), P. 1166–1173.
30. Teixeira da Silva V.L.S., Frety R., J M.S. Activation and Regeneration of a NiMo/Al2O3 Hydrotreatment Catalyst. Ind. Eng. Chem. Res., 1994, 33, P. 1692–1699.
31. Guevara-Lara A., Bacaud R., Vrinat M. Highly Active NiMo/TiO2—Al2O3 Catalysts: Influence of the Preparation and the Activation Conditions on the Catalytic Activity. Appl. Catal. A Gen., 2007, 328 (2), P. 99–108.
32. Vroulias D., Gkoulemani N., Papadopoulou C., Matralis H. W—Modified Ni/Al2O3 Catalysts for the Dry Reforming of Methane: Effect of W Loading. Catal. Today, 2020, 355, P. 704–715.
33. Priecel P., Kubicka D., ˇ Capek L., Bastl Z., Ry ˇ sˇanek P. The Role of Ni Species in the Deoxygenation of Rapeseed Oil over NiMo-Alumina Catalysts. ´ Appl. Catal. A Gen., 2011, 397 (1–2), P. 127–137.
34. Arun N., Maley J., Chen N., Sammynaiken R., Hu Y., Dalai A.K. NiMo Nitride Supported on Al2O3 for Hydrodeoxygenation of Oleic Acid: Novel Characterization and Activity Study. Catal. Today, 2017, 291, P. 153–159.
35. Fan X., Liu D., Zhao Z., Li J., Liu J. Influence of Ni/Mo Ratio on the Structure-Performance of Ordered Mesoporous Ni–Mo–O Catalysts for Oxidative Dehydrogenation of Propane. Catal. Today, 2020, 339, P. 67–78.
36. Bankar P.K., Ratha S., More M.A., Late D.J., Rout C.S. Enhanced Field Emission Performance of NiMoO4 Nanosheets by Tuning the Phase. Appl. Surf. Sci., 2017, 418, P. 270–274.
37. Al-Dalama K., Stanislaus A. Temperature Programmed Reduction of SiO2-Al2O3 Supported Ni, Mo and NiMo Catalysts Prepared with EDTA. Thermochim. Acta, 2011, 520 (1–2), P. 67–74.
38. Klimov O.V., Pashigreva A.V., Bukhtiyarova G.A., Budukva S.V., Fedotov M.A., Kochubey D.I., Chesalov Y.A., Zaikovskii V.I., Noskov A.S. Bimetallic Co-Mo Complexes: A Starting Material for High Active Hydrodesulfurization Catalysts. Catal. Today, 2010, 150 (3–4), P. 196–206.
39. Brito J.L., Laine J., Pratt K.C. Temperature-Programmed Reduction of Ni-Mo Oxides. J. Mater. Sci., 1989, 24 (2), P. 425–431.
40. Yang F., Libretto N.J., Komarneni M.R., Zhou W., Miller J.T., Zhu X., Resasco D.E. Enhancement of M-Cresol Hydrodeoxygenation Selectivity on Ni Catalysts by Surface Decoration of MoOx Species. ACS Catal., 2019, 9 (9), P. 7791–7800.
41. Yang J., Zuo T., Lu J. Effect of Preparation Methods on the Hydrocracking Performance of NiMo/Al2O3 Catalysts. Chin. J. Chem. Eng., 2021, 32, P. 224–230.
42. Ameen M., Azizan M.T., Ramli A., Yusup S., Alnarabiji M.S. Catalytic Hydrodeoxygenation of Rubber Seed Oil over Sonochemically Synthesized Ni-Mo/γ-Al2O3 Catalyst for Green Diesel Production. Ultrason. Sonochem., 2019, 51, P. 90–102.
43. Kaddouri A., Rosso R.D., Mazzocchia C., Fumagalli D. Isotermal Reduction Behavior of Undoped and Ca-, K- Nd P-Doped NiMoO4 Phases Used for Selective Propane Oxydehydrogenation. J. Therm. Anal. Calorim., 2001, 63, P. 267–277.
44. Chen M., Wu J.L., Liu Y.M., Cao Y., Guo L., He H.Y., Fan K.N. A Practical Grinding-Assisted Dry Synthesis of Nanocrystalline NiMoO4 Polymorphs for Oxidative Dehydrogenation of Propane. J. Solid State Chem., 2011, 184 (12), P. 3357–3363.
45. Plyasova L.M., Ivanchenko I.Y., Andrushkevich M.M., Buyanov R.A., Itenberg I.S., Khramova G.A., Karakchiev L.G., Kustova G.N., Stepanov G.A., Tsailingol’d A.L., Pilipenko F.S. Study of the Phase Composition of Nickel-Molybdenum Catalysts. Kinetics and Catalysis, 1973, 14 (4), P. 882–886.
46. Chen Y., Li C., Chen X., Liu Y., Liang C. Synthesis of ZSM-23 Zeolite with Dual Structure Directing Agents for Hydroisomerization of nHexadecane. Microporous and Mesoporous Materials, 2018, 268, P. 216–224.
47. Bai D., Meng J.P., Zou C., Li C., Liang C. H. Manipulation of Hydroisomerization Performance on Pt/ZSM-23 by Introducing Al2O3. Journal of Fuel Chemistry and Technology, 2023, 51 (2), P. 175–185.
48. Wang Q., Sim L.B., Xie J., Ye S., Fu J., Wang J., Zhang N., Zheng J., Chen B. Comparative Study of Pt/Zeolites for n-Hexadecane Hydroisomerization: EU-1, ZSM-48, ZSM-23, ZSM-22, and ZSM-12. Chem. Eng. Sci., 2024, 287, 119785.
49. Ding S., Li F., Li Z., Yu H., Song C., Xiong D., Lin H. Catalytic Hydrodeoxygenation of Waste Cooking Oil and Stearic Acid over Reduced Nickel-Based Catalysts. Catal. Commun., 2021, 149, 106235.
50. Wang Z., Jia X., Yan Z., Fu W., Li Z., Tang T., Zhang L. CrOx Modified Particles Size and Electronic Density of Ni Catalyst on ZSM-23 for Enhanced Hydroisomerization Performance of Long-Chain n-Alkanes. Fuel, 2024, 367, 131476.
51. Tu C., Chen J., Li W., Wang H., Deng K., Vinokurov V.A., Huang W. Hydrodeoxygenation of Bio-Derived Anisole to Cyclohexane over BiFunctional IM-5 Zeolite Supported Ni Catalysts. Sustain. Energy Fuels, 2019, 3 (12), P. 3462–3472.
52. Mannei E., Ayari F., Petitto C., Asedegbega-Nieto E., Guerrero-Ruiz A. R., Delahay G., Mhamdi M., Ghorbel A. Light Hydrocarbons Ammoxidation into Acetonitrile over Mo—ZSM-5 Catalysts: Effect of Molybdenum Precursor. Microporous and Mesoporous Materials, 2017, 241, P. 246–257.
53. Wang J., Chen Y., Liu C., Lu Y., Lin X., Hou D., Luo C., Wang D., Zheng Z., Zheng Y. Highly Stable Mo-Based Bimetallic Catalysts for Selective Deoxygenation of Oleic Acid to Fuel-like Hydrocarbons. J. Environ. Chem. Eng., 2023, 11 (1), 109104.
54. Bal’zhinimaev B.S., Paukshtis E.A., Suknev A.P., Makolkin N.V. Highly Selective/Enantioselective Pt-ReOx/C Catalyst for Hydrogenation of L-Malic Acid at Mild Conditions. J. of Energy Chemistry, 2018, 27 (3), P. 903–912.
55. Alvarez F., Ribeiro F.R., Perot G., Thomazeau C., Guisnet M. Hydroisomerization and Hydrocracking of Alkanes. 7. Influence of the Balance between Acid and Hydrogenating Functions on the Transformation of n-Decane on PtHY Catalysts. J. Catal., 1996, 162 (2), P. 179–189.
56. Gosselink R.W., Hollak S.A.W., Chang S.W., Van Haveren J., De Jong K.P., Bitter J.H., Van Es D.S. Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. Chem. Sus. Chem., 2013, 6 (9), P. 1576–1594.
57. Bourikas K., Kordulis C., Lycourghiotis A. The Role of the Liquid-Solid Interface in the Preparation of Supported Catalysts. Catal. Rev. Sci. Eng., 2006, 48 (4), P. 363–444.
58. Fedyna M., Zak A., Jaroszewska K., Mokrzycki J., Trawczy ˙ nski J. Composite of Pt/AlSBA-15+zeolite Catalyst for the Hydroisomerization of ´ n-Hexadecane: The Effect of Platinum Precursor. Microporous and Mesoporous Materials, 2020, 305 (May).
59. Knyazheva O.A., Baklanova O.N., Lavrenov A.V., Buluchevskii E.A., Drozdov V.A., Trenikhin M.V., Leont’eva N.N., Vasilevich A.V., Likholobov V.A. Mechanochemical Synthesis of Nanocrystalline Nickel—Molybdenum Compounds and Their Morphology and Application in Catalysis: III. Catalytic Properties of Massive Ni–Mo Sulfide Catalysts Synthesized Using Mechanochemical Activation. Kinetics and Catalysis, 2014, 55 (1), P. 130–138.
60. Knyazheva O.A., Baklanova O.N., Lavrenov A.V., Buluchevskii E.A., Gulyaeva T.I., Leont’eva N.N., Drozdov V.A., Likholobov V.A., Vasilevich A.V. Mechanochemical Synthesis of β-NiMoO4 as a Precursor of Bulk Highly Dispersed Catalyst for the Hydrocracking of Oil Fractions. Catalysis in Industry, 2012, 4 (3), P. 179–185.
61. Nepomnyashchiy A.A., Saibulina E.R., Buluchevskiy E.A., Gulyaeva T.I., Yurpalov V.L., Mironenko R.M., Potapenko O.V., Lavrenov A.V. Combined Deoxygenation and Isomerization of Sunflower Oil Fat Acid Triglycerides on Pt/Al2O3-Zeolite Catalysts. Catalysis in Industry, 2024, 16 (2), P. 170–177.
62. Nepomnyashchiy A.A., Yurpalov V.L., Buluchevskiy E.A., Drozdov V.A., Gulyaeva T.I., Mironenko R.M., Lavrenov A.V. Hydrodeoxygenation of Sunflower Oil on Pt/WOx-Al2O3 Catalyst. Catalysis in Industry, 2024, 16 (2), P. 187–195.
Review
For citations:
Kovalevskaya K.S., Kukushkin R.G., Zaikina O.O., Bulavchenko O.A., Yakovlev V.A. The relationship between the impregnation solution composition and the active component distribution NiMo/ZSM-23 catalysts for the plant lipids hydroprocessing. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):872-886. https://doi.org/10.17586/2220-8054-2025-16-6-872-886
