Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

MXene based electrocatalysts for efficient water splitting

https://doi.org/10.17586/2220-8054-2025-16-6-887-896

Abstract

In this study, we modified Ni based electrodes with MXene and MXene-based composite catalysts for water splitting. The MXene based catalyst exhibited excellent electrochemical surface area (ECSA) of 1840 cm2 , highlighting its abundant active sites. To further enhance catalytic activity, MXene was modified with graphene oxide (GO) and carbon black (CB), which significantly reduced the overpotential from 300 mV to 196 mV at 10 mA cm−2 and improved the reaction kinetics, as evidenced by a low Tafel slope of 96.35 mV dec−1 . Moreover, the MXene–GO–CB composite demonstrated outstanding long-term durability, maintaining stable operation for 50 h at 100 mA cm−2 with only a 34 mV increase in overpotential at 10 mA cm−2 . These results confirm that the synergistic combination of MXene with GO and CB yields a highly active and durable electrocatalyst, offering strong potential for practical water electrolysis applications.

About the Authors

J. Mamanazirov
Institute of Materials Science, Uzbekistan Academy of Sciences; National Research Institute of Renewable Energy Sources, Ministry of Energy
Uzbekistan

Javlonbek Mamanazirov

Chingiz Aytmatov 2B St., Tashkent, 100084; Bodomzor Yuli 2B St., Tashkent, 100084



Sh. Mamatkulov
Institute of Materials Science, Uzbekistan Academy of Sciences; Institute of Fundamental and Applied Research under TIIAME National Research University
Uzbekistan

Shavkat Mamatkulov

Chingiz Aytmatov 2B St., Tashkent, 100084; Mirzo Ulug’bek district, Qori Niyaziy street 39, Tashkent, 100000



M. Jumayeva
Institute of Materials Science, Uzbekistan Academy of Sciences
Uzbekistan

Maxfuza Jumayeva

Chingiz Aytmatov 2B St., Tashkent, 100084



Kh. Butanov
Institute of Materials Science, Uzbekistan Academy of Sciences
Uzbekistan

Khakimjan Butanov

Chingiz Aytmatov 2B St., Tashkent, 100084



Wen He
School of Materials Science and Engineering, Anhui University
China

Wen He

Hefei, 230601



Jingxiang Low
School of Physical Science and Technology, Tiangong University
China

Jingxiang Low

Tianjin, 300387, P.R.



Odilhuja Parpiev
Institute of Materials Science, Uzbekistan Academy of Sciences
Uzbekistan

Odilhuja Parpiev

Chingiz Aytmatov 2B St., Tashkent, 100084



Olim Ruzimuradov
Turin Polytechnic University in Tashkent
Uzbekistan

Olim Ruzimuradov

Tashkent, 100095



References

1. Sampene A.K., Li C., Wiredu J. An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance. Energy Policy, 2024, 187, P. 114025.

2. Ehteshami, S.M.M., Chan S.H. The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges. Energy Policy, 2014, 73, P. 103–109.

3. Anderson D., Leach M. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energy Policy, 2003, 32(14), P. 1603–1614.

4. Luo Z., Hu Y., Xu H., Gao D., Li W. Cost-Economic analysis of hydrogen for China’s fuel cell transportation field. Energies, 2020, 13(24), P. 6522.

5. Olivier P., Bourasseau C., Bouamama Pr.B. Low-temperature electrolysis system modelling: A review. Renewable and Sustainable Energy Reviews, 2017, 78, P. 280–300.

6. Karthikeyan S.C., Sidra S., Ramakrishnan S., Kim D.H., Sagayaraj P.J., Sekar K., Yoo D.J. Heterostructured NiO/IrO2 synergistic pair as durable trifunctional electrocatalysts towards water splitting and rechargeable zinc-air batteries: An experimental and theoretical study. Applied Catalysis B Environment and Energy 2024, 355, P. 124196.

7. Qadeer M.A., Zhang X., Farid M.A., Tanveer M., Yan Y., Du S., Huang Z., Tahir M., Zou J. A review on fundamentals for designing hydrogen evolution electrocatalyst. Journal of Power Sources, 2024, 613, P. 234856.

8. Tang J., Xu X., Tang T., Zhong Y., Shao Z. Perovskite-Based electrocatalysts for Cost-Effective Ultrahigh-Current-Density water splitting in anion exchange membrane electrolyzer cell. Small Methods, 2022, 6(11).

9. Amani A.M., Tayebi L., Vafa E., Jahanbin A., Abbasi M., Vaez A., Kamyab H., Chelliapan S. Innovation applications of MXenes in biomedicine. Materials Today Communications, 2024, 40, P. 109929.

10. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, 2023.

11. Fu L., Xia W. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Advanced Engineering Materials, 2020, 23(4).

12. Haemers J., Gusmao R., Sofer Z. Synthesis protocols of the most common layered carbide and nitride MAX phases. ˜ Small Methods, 2020, 4(3).

13. Sokol M., Natu V., Kota S., Barsoum M.W. On the Chemical Diversity of the MAX Phases. Trends in Chemistry, 2019, 1(2), P. 210–223.

14. Barsoum M.W., Radovic M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research 2011, 41(1), P. 195–227.

15. Wei Y., Zhang P., Soomro R. A., Zhu Q., Xu B. Advances in the synthesis of 2D MXenes. Advanced Materials, 2021, 33(39).

16. Kajiyama S., Szabova L., Iinuma H., Sugahara A., Gotoh K., Sodeyama K., Tateyama Y., Okubo M., Yamada A. Enhanced Li-Ion accessibility in MXENE titanium carbide by steric chloride termination. Advanced Energy Materials, 2017, 7(9).

17. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional nanocrystals produced by exfoliation of TI3ALC2. Advanced Materials, 2011, 23(37), P. 4248–4253.

18. Yang S., Zhang P., Wang F., Ricciardulli A.G., Lohe M.R., Blom P.W.M., Feng X. Fluoride-Free synthesis of Two-Dimensional titanium carbide (MXENE) using a binary aqueous system. Angewandte Chemie International Edition, 2018, 57(47), P. 15491–15495.

19. Ni Q.-Y., He X.-F., Zhou J.-L., Yang Y.-Q., Zeng Z.-F., Mao P.-F., Luo Y.-H., Xu J.-M., Jiang B., Wu Q., Wang B., Qin Y.-Q., Gong L.-X., Tang L.-C., Li S.-N. Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring. Journal of Material Science and Technology, 2024, 191, P. 181–191.

20. Jiang M., Wang D., Kim Y., Duan C., Talapin D.V., Zhou C. Evolution of Surface Chemistry in Two-Dimensional MXEnES: From mixed to Tunable Uniform Terminations. Angewandte Chemie, 2024, 136(37).

21. Cao, Fangcheng, et al. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Advanced Materials, 2022, 34(13), P. 2107554.

22. Soomro, Razium A., et al. Progression in the Oxidation Stability of MXenes. Nano-Micro Letters, 2023, 15(1), P. 18.

23. Iqbal, Aamir, et al. Improving Oxidation Stability of 2D MXenes: Synthesis, Storage Media, and Conditions. Nano Convergence, 2021, 8(1), P. 16.

24. Gao X., Du X., Mathis T.S., et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat Commun, 2020, 11, P. 6160.

25. Meng, Weisong, et al. Alkalized MXene/Carbon Nanotube Composite for Stable Na Metal Anodes. RSC Advances, 2024, 14(17), P. 12030–12037.

26. Iravani, Siavash, et al. Advancements in MXenes and Mechanochemistry: Exploring New Horizons and Future Applications. Materials Advances, 2024, 5(21), P. 8404–8418.

27. He Lei, et al. Advances and Challenges in MXene-Based Electrocatalysts: Unlocking the Potential for Sustainable Energy Conversion. Materials Horizons, 2024, 11(18), P. 4239–4255.

28. Zhang, Qingxiao, et al. Synthesis and Design Strategies of MXene Used as Catalysts. ChemCatChem, 2024, 16(22).

29. Zhou Tianzhu, et al. Super-Tough MXene-Functionalized Graphene Sheets. Nature Communications, 2020, 11(1), P. 2077.

30. Li Xiao-Peng, et al. Reshapable MXene/Graphene Oxide/Polyaniline Plastic Hybrids with Patternable Surfaces for Highly Efficient Solar-Driven Water Purification. Advanced Functional Materials, 2021, 32(15).

31. Gong Kaili, et al. MXene as Emerging Nanofillers for High-Performance Polymer Composites: A Review. Composites Part B: Engineering, 2021, 217, P. 108867.

32. Iravani Siavash, et al. Synergistic Advancements: Exploring MXene/Graphene Oxide and MXene/Reduced Graphene Oxide Composites for NextGeneration Applications. FlatChem, 2024, 48, P. 100759.

33. Liu Qi, et al. Improved Anti-Corrosion Behaviour of an Inorganic Passive Film on Hot-Dip Galvanised Steel by Modified Graphene Oxide Incorporation. Corrosion Science, 2020, 174, P. 108846.

34. Yin Yiming, et al. Distinct Ion Transport Behavior between Graphene Oxide and UV-Irradiated Reduced Graphene Oxide Membranes. Chemical Engineering Journal, 2024, 493, Aug., P. 152304.

35. Amir Reza Salasel, et al. Role of Graphene Concentration on Electrochemical and Tribological Properties of Graphene-Poly(Methyl Methacrylate) Composite Coatings. Journal of Composite Materials, 2023, 57(24), P. 3877–3896.

36. Su, Liwei, et al. N-Doped Carbon Nanolayer Modified Nickel Foam: A Novel Substrate for Supercapacitors. Applied Surface Science, 2020, 546, P. 148754–148754.

37. Zhang Jiaoyuan, et al. Construction of ZnO@Co3O4-Loaded Nickel Foam with Abrasion Resistance and Chemical Stability for Oil/Water Separation. Surface and Coatings Technology, 2019, 357, P. 244–251.

38. Das, Manisha, et al. Three-Dimensional Nickel and Copper-Based Foam-In-Foam Architecture as an Electrode for Efficient Water Electrolysis. Catalysis Today, 2023, 424(1), P. 113836.

39. Ao Guang-Hong, et al. Construction of Hierarchical Porous Architecture on Ni Foam for Efficient Oxygen Evolution Reaction Electrode. Frontiers in Materials, 2021, 8.

40. Yu K., Zhang J., Hu Y., Wang L., Zhang X., Zhao B. Ni Doped Co-MOF-74 Synergized with 2D Ti3C2Tx MXene as an Efficient Electrocatalyst for Overall Water-Splitting. Catalysts, 2024, 14(3), P. 184.

41. Shi X., Yu Z., Liu Z., Cao N., Zhu L., Liu Y., Zhao K., Shi T., Yin L., Fan Z. Scalable, High-Yield Monolayer MXene Preparation from Multilayer MXene for Many Applications. Angewandte Chemie, 2024.

42. Jiang S., Lu L., Song Y. Recent Advances of Flexible MXene and its Composites for Supercapacitors. Chemistry – a European Journal 2024, 30(24).

43. Khanal R., Irle S. Effect of surface functional groups on MXene conductivity. The Journal of Chemical Physics. 2023, 158(19).

44. Zhang Wei, et al. Effect of Carbon Black Concentration on Electrical Conductivity of Epoxy Resin–Carbon Black–Silica Nanocomposites. Journal of Materials Science, 2007, 42(18), P. 7861–7865.

45. Abdullah N., Ishak N.A.I.M., Tan K.H., Zaed M.A., Saidur R., Pandey A.K. Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion. FlatChem, 2024, 47, P. 100730.

46. Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23(3), P. 149–163.

47. Miao B., Bashir T., Zhang H., Ali T., Raza S., He D., Liu Y., Bai J. Impact of various 2D MXene surface terminating groups in energy conversion. Renewable and Sustainable Energy Reviews, 2024, 199, P. 114506.

48. Singh, Iqbal, et al. Modification of the Properties of Titanium Carbide MXene by Ag Doping via Ion Implantation for Quantum Dot-Sensitized Solar Cell Applications. Journal of Electronic Materials, 2024, 53(9), P. 5007–5017.

49. Gonzalez A. 1.5 X-Ray Crystallography: Data Collection Strategies and Resources. ´ Comprehensive Biophysics, 2012, P. 64–91.

50. Mamanazirov J.I., Ruzimuradov O.N., Mamatkulov Sh.I. THE IMPACT OF 2D MXENE ON ALUMINA BASED INKS FOR DIRECT INK WRITING. Ceramics International, 2025, 51(12PA), P. 15725–15732.

51. Yun T., Kim H., Iqbal A., Cho Y.S., Lee G.S., Kim M., Kim S.J., Kim D., Gogotsi Y., Kim S.O., Koo C.M. Electromagnetic shielding of monolayer MXENE assemblies. Advanced Materials, 2020, 32(9).

52. Murthy A.P., Theerthagiri J., Madhavan J. Insights on Tafel constant in the analysis of hydrogen evolution reaction. The Journal of Physical Chemistry C 2018, 122(42), P. 23943–23949.

53. Thomas J.G.N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Transactions of the Faraday Society, 1961, 57, P. 1603.

54. Sergiienko S.A., Lajaunie L., Rodr´ıguez-Castellon E., et al. Composite MAX phase/MXene/Ni electrodes with a porous 3D structure for hydrogen ´ evolution and energy storage application. RSC Advances, 2024, 14(5), P. 3052–3069.

55. Granozzi G., Alonso-Vante N. Electrochemical Surface Science: Basics and applications, MDPI, 2019.


Review

For citations:


Mamanazirov J., Mamatkulov Sh., Jumayeva M., Butanov Kh., He W., Low J., Parpiev O., Ruzimuradov O. MXene based electrocatalysts for efficient water splitting. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):887-896. https://doi.org/10.17586/2220-8054-2025-16-6-887-896

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)