Resonance asymptotics for a pair quantum waveguides with common semitransparent perforated wall
https://doi.org/10.17586/2220-8054-2020-11-6-619-627
Abstract
A nanostructure model,which is represented as a pair of coupled two-dimensional quantum waveguides with common semitransparent wall, is considered. That wall has small window which induces a resonance state localized near the window. Semitransparency is the reason for the asymptotics difference in comparison with the non-transparent case. Using the matching of asymptotic expansions method, we obtain formulas for resonances and resonance states.
About the Authors
A. M. VorobievRussian Federation
Kronverkskiy, 49, St. Petersburg, 197101
E. S. Trifanova
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
I. Y. Popov
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
References
1. Lord Rayleigh O.M. The theory of Helmholtz Resonator. Proceeding of Royal Society, 1916, 638, P. 265–275.
2. Morse F.M., Feshbach G. Methods of theoretical physics, V. 2. Foreign Literature Publishing House, 1960, 986 p.
3. Kiselev A.A., Pavlov B.S. The eigenfrequencies and eigenfunctions of the Laplace operator of the Neumann problem in a system of two coupled resonators. Theor. Math. Phys., 1994, 100(3), P. 354–366.
4. Gadylshin R.R. The existence and asymptotics of poles with a small imaginary part for the Helmholtz resonator. Uspekhi of Mathematical Sciences, 1997, 52(313), P. 71–72.
5. Borisov D.I. Discrete spectrum of an asymmetric pair of waveguides coupled through a window. Sb. Math., 2006, 197(4), P. 475–504.
6. Achilleos V., Richoux O., et.al. Acoustic solitons in waveguides with Helmholtz resonators: Transmission line approach. Phys.Rev. E., 2015, 91, P. 023204.
7. Martinez A., Ned’ elec L. Optimal lower bound of the resonance widths for a Helmoltz tube-shaped resonator. J. Spectral Th., 2012, 2, P. 203–223.
8. Gadyl’shin R.R. A two-dimensional analogue of the Helmholtz resonator with ideally rigid walls. Translation in Diff. Eq., 1994, 30(2), P. 201–209.
9. Gadyl’shin R.R. Influence of the position of the opening and its shape on the properties of a Helmholtz resonator. Theor. Math. Phys., 1992, 93, P. 1151–1159.
10. Borisov D., Exner P. Distant perturbation asymptotics in window-coupled waveguides. I. The non-threshold case. J. Math. Phys., 2006, 47(10), P. 113502(1-24).
11. Borisov D.I., Gadyl’shin R.R. On the spectrum of the Laplacian with frequently alternating boundary conditions. Theor. Math. Phys., 1999, 118(3), P. 272–277.
12. Ilyin A.M. Matching of the asymptotic expansions of solutions. Science, 1989, 336 p.
13. Exner P., Kreicirik D. Waveguides coupled through a semitransparent barrier: a Birman-Schwinger analysis. Rev. Math. Phys., 2001, 13, P. 307–334.
14. Exner P., Kreicirik D. Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties. J. Phys. A, 1999, 32, P. 4475.
15. Vorobiev A.M., Bagmutov A.S., Popov A.I. On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(4), P. 415–419.
16. Behrndt J., Langer M., Lotoreichik V. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces. Nanosystems: Phys. Chem. Math., 2016, 7(2), P. 290–302.
17. Mantile A., Posilicano A. Laplacians with singular perturbations supported on hypersurfaces. Nanosystems: Phys. Chem. Math., 2016, 7(2), P. 315–323.
18. Exner P., Kondej S., Lotoreichik V. Asymptotics of the bound state induced by delta-interaction supported on a weakly deformed plane. J. Math. Phys., 2018, 59, P. 013051.
19. Behrndt J., Exner P., et.al. Approximation of Schroedinger operators with delta-interactions supported on hypersurfaces. Math. Nachr., 2017, 290, P. 12151248.
20. Popov I.Yu. The operator extension theory, semitransparent surface and short range potential. Math. Proc. Cambridge Phil. Soc., 1995, 118, P. 555–563.
21. Popov I.Yu. The extension theory, domains with semitransparent surface and the model of quantum dot. Proc. Royal Soc. London A, 1996, 452(1950), P. 1505–1515.
22. Popov I.Yu. The extension theory and the opening in semitransparent surface. J. Math. Phys., 1992, 33(4), P. 1685–1689.
23. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics., M.:Science, 1972, 531 p.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(15KB)
|
Indexing metadata ▾ |
Review
For citations:
Vorobiev A.M., Trifanova E.S., Popov I.Y. Resonance asymptotics for a pair quantum waveguides with common semitransparent perforated wall. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):619–627. https://doi.org/10.17586/2220-8054-2020-11-6-619-627