Nonmagnetic impurities in skyrmion racetrack memory
https://doi.org/10.17586/2220-8054-2020-11-6-628-635
Abstract
The influence of non-magnetic defects of different sizes on the stability and anchoring of skyrmions in race track memory devices has been investigated. The energy surface of the system was built on the basis of the generalized Heisenberg model, which includes exchange, DzyaloshinskiiMoriya interaction, anisotropy, and an external magnetic field. Minima and saddle points on the energy surface are used to estimate quantitatively the stability and pinning effects for skyrmions. The activation energies for attachment and detachment of skyrmions from defects, collapse and nucleation of skyrmions on a nonmagnetic impurity on a track of finite width are calculated. The joint effect of defects and the proximity of sample boundaries on the stability and localization of skyrmions has been studied. It is shown that skyrmion race track memory can only work if the track width is much greater than four times the skyrmion radius, and the spatial size of defects that can pin a skyrmion is small compared to its own size.
Otherwise, the skyrmion will annihilate instead of moving under the action of the spin-polarized current.
About the Authors
M. N. PotkinaRussian Federation
Kronverkskiy, 49, St. Petersburg, 197101
St. Petersburg, 198504
Univ. of Iceland, 107 Reykjav´ık, Iceland
I. S. Lobanov
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
St. Petersburg, 198504
V. M. Uzdin
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
St. Petersburg, 198504
References
1. Parkin S.S.P., Hayashi M., Thomas L. Magnetic domain-wall racetrack memory. Science, 2008, 320(5873), P. 190–194.
2. Mittal S. A survey of techniques for architecting processor components using domain-wall memory. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2016, 13(2), P. 1–25.
3. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nature Nanotechnology, 2013, 8, P. 152–156.
4. Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nature Reviews Materials, 2016, 1(7), P. 16044.
5. Soumyanarayanan A., Raju M., Oyarce A.L.G., Tan A.K.C., Im M.Y., Petrovic A.P., Ho P., Khoo K.H., Tran M., Gan C.K., Ernult F.,´ Panagopoulos C. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nature Materials, 2017, 16(9) P. 898–904.
6. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2017, 2, P. 17031.
7. Finocchio G., Buttner F., Tomasello R., Carpentieri M., Kl¨ aui M. Magnetic skyrmions: from fundamental to applications.¨ Journal of Physics D: Applied Physics, 2016, 49(42), P. 423001.
8. Iwasaki J., Mochizuki M., Nagaosa N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nature Communications, 2013, 4(1), P. 1463.
9. Muller J., Rosch A. Capturing of a magnetic skyrmion with a hole.¨ Physical Review B, 2015, 91(5), P. 054410.
10. Back C.H., Cros V., Ebert H., Everschor-Sitte K., Fert A., Garst M., Ma T., Mankovsky S., Monchesky T., Mostovoy M.V., Nagaosa N. The 2020 skyrmionics roadmap. Journal of Physics D: Applied Physics, 2020, 53(36), P. 363001.
11. Everschor-Sitte K., Masell J., Reeve R.M., Klaui M. Perspective: Magnetic skyrmions - Overview of recent progress in an active research¨ field. Journal of Applied Physics, 2018, 124(24), P. 240901.
12. Sampaio J., Cros V., Rohart S., Thiaville A., Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnology, 2013, 8(11), P. 839.
13. Romming N., Hanneken C., Menzel M., Bickel J.E., Wolter B., von Bergmann K., Kubetzka A., Wiesendanger R. Writing and Deleting Single Magnetic Skyrmions. Science, 2013, 341(6146), P. 636–639.
14. Hayashi M., Thomas L., Moriya R., Rettner Ch., Parkin S.S.P. Current-Controlled Magnetic Domain-Wall Nanowire Shift Register. Science, 2008, 320(5873), P. 209–211.
15. Crum D.M., Bouhassoune M., Bouaziz J., Schweflinghaus B., Blugel S., Lounis S. Perpendicular reading of single confined magnetic¨ skyrmions. Nature Communications, 2015, 6(1), P. 8541.
16. Bessarab P.F., Muller G.P., Lobanov I.S., Rybakov F.N., Kiselev N.S., J¨ onsson H., Uzdin V.M., Bl´ ugel S., Bergqvist L., Delin A. Lifetime of¨ racetrack skyrmions. Scientific Reports, 2018, 8(1), P. 3433.
17. Yan Z.R., Liu Y.Z., Guang Y., Feng J.F., Lake R.K., Yu G.Q., Han X.F. Robust Skyrmion Shift Device Through Engineering the Local Exchange-Bias Field. Physical Review Applied, 2020, 14(4), P. 044008.
18. Suess D., Vogler C., Bruckner F., Heistracher P., Slanovc F., Abert C. Spin Torque Efficiency and Analytic Error Rate Estimates of Skyrmion Racetrack Memory. Scientific Reports, 2019, 9(1), P. 4827.
19. Everschor K., Garst M., Binz B., Jonietz F., Muhlbauer S., Pfleiderer C., Rosch A. Rotating skyrmion lattices by spin torques and field or¨ temperature gradients. Physical Review B, 2012, 86(5), P. 054432.
20. Potkina M.N., Lobanov I.S., Jnsson H., Uzdin V.M. Skyrmions in antiferromagnets: Thermal stability and the effect of external field and impurities. Journal of Applied Physics, 2020, 127(21), P. 213906.
21. Potkina M.N., Lobanov I.S., Tretiakov O.A, Jonsson H, Uzdin V.M. Antiskyrmions in Ferromagnets and Antiferromagnets: Stability and´ Dynamics, 2019. arXiv preprint, arXiv:1906.06383v2.
22. Potkina M.N., Lobanov I.S., Tretiakov O.A., Jnsson H., Uzdin V.M. Stability of Long-lived Antiskyrmions in Mn-Pt-Sn Material. Physical Review B, 2020, 102(13), P. 134430.
23. Koshibae W., Nagaosa N. Theory of current-driven skyrmions in disordered magnets. Scientific Reports, 2018, 8(1), P. 6328.
24. Fernandes I.L., Bouaziz J., Blugel S., Lounis S. Universality of defect-skyrmion interaction profiles.¨ Nature Communications, 2018, 9(1), P. 4395.
25. Fernandes I.L, Chico J., Lounis S. Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface. Journal of Physics: Condensed Matter, 2020, 32(42), P. 425802.
26. Castell-Queralt J., Gonzalez-G´ omez L., Del-Valle N., Sanchez A., Navau C. Accelerating, guiding, and compressing skyrmions by defect´ rails. Nanoscale, 2019, 11(26), P. 12589–12594.
27. Stosic D., Ludermir B.T., Miloevi V.M. Pinning of magnetic skyrmions in a monolayer Co film on Pt(111): Theoretical characterization and exemplified utilization. Physical Review B, 2017, 96(21), P. 214403.
28. Muller J. Magnetic skyrmions on a two-lane racetrack.¨ New Journal of Physics, 2017, 19, P. 1740006.
29. Zhu D., Kang W., Li S., Huang Y., Zhang X., Zhou Y., Zhao W. Skyrmion Racetrack Memory With Random Information Update/Deletion/Insertion. IEEE Transactions on Electron Devices, 2018, 65(1), P. 87–95.
30. Hagemeister J., Romming N., von Bergmann K., Vedmedenko E.Y., Wiesendanger R. Stability of single skyrmionic bits. Nature Communications, 2015, 6(1), P. 8455.
31. Lobanov I.S., Uzdin V.M. The lifetime of big size topological chiral magnetic states. Estimation of the pre-exponential factor in the Arrhenius law, 2020. arXiv preprint, arXiv:2008.06754 [cond-mat.mtrl-sci]
32. Bessarab P.F., Uzdin V.M., Jonsson H. Harmonic transition-state theory of thermal spin transitions.´ PhysicalReviewB, 2012, 85(18), P. 184409.
33. Bessarab P.F., Uzdin V.M., Jnsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Computer Physics Communications, 2015, 196, P. 335–347.
34. Hanneken C., Kubetzka A., von Bergmann K., Wiesendanger R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New Journal of Physics, 2016, 18(5), P. 055009.
35. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., Jonsson H. The effect of confinement and defects on the thermal stability of skyrmions.´ Physica B: Condensed Matter, 2018, 549, P. 6–9.
36. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., Jonsson H. Energy surface and lifetime of magnetic skyrmions.´ Journal of Magnetism and Magnetic Materials, 2018, 459, P. 236–240.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(394KB)
|
Indexing metadata ▾ |
Review
For citations:
Potkina M.N., Lobanov I.S., Uzdin V.M. Nonmagnetic impurities in skyrmion racetrack memory. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):628–635. https://doi.org/10.17586/2220-8054-2020-11-6-628-635