Nanostructured SiGe:Sb solid solutions with improved thermoelectric figure of merit
https://doi.org/10.17586/2220-8054-2020-11-6-680-684
Аннотация
Thermoelectric Si0.65Ge0.35Sbδ materials have been fabricated by spark plasma sintering of Ge–Si–Sb powder mixtures. The electronic properties of Si0.65Ge0.35Sbδ were found to be dependent on the uniformity of mixing of the components, which in turn is determined by the maximum heating temperature during solid-state sintering. Provided the concentration of donor Sb impurity is optimized the thermoelectric figure of merit for the investigated structures can be as high as 0.63 at 490 ◦C, the latter value is comparable with world-known analogues obtained for Si1−xGexPδ.
Об авторах
M. DorokhinРоссия
P. Demina
Россия
Yu. Kuznetsov
Россия
I. Erofeeva
Россия
A. Zdoroveyshchev
Россия
M. Boldin
Россия
E. Lantsev
Россия
A. Popov
Россия
E. Uskova
Россия
V. Trushin
Россия
Список литературы
1. Yu B., Zebarjadi M., Wang H., et.al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett., 2012, 12, P. 2077–2082.
2. Bathula S., Gahtori B., Jayasimhadri M., et.al. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicongermanium alloys synthesized employing spark plasma sintering. Appl. Phys. Lett., 2014, 10, 061902.
3. Chen Z.-G., Han G., Yang L., et.al. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci.: Materials International, 2012, 22, P. 535–549.
4. Shikari Y., Usami N. Silicon-Germanium (SiGe) nanostructures. Production, properties and application in electronics. Woodhead publishing limited, 2011.
5. Gayner C., Kar K.K. Recent advances in thermoelectric materials. Progress Mater. Sci., 2016, 83, P. 330–382.
6. Ovsyannikov D.A., Popov M.Y., Buga S.G., et.al. Transport properties of nanocomposite thermoelectric materials based on Si and Ge. Physics of the Solid State, 2015, 57, P. 605–612.
7. Dorokhin M.V., Demina P.B., Erofeeva I.V., et.al. In-situ doping of thermoelectric materials based on SiGe solid solutions during their synthesis by the spark plasma sintering technique. Semiconductors, 2019, 53, P. 1158–1163.
8. Health N.J. Hazardous substance Fact Sheet. Antimony. URL: https://web.doh.state.nj.us/rtkhsfs/factsheets.aspx.
9. Olesinski R.W., Abbaschian G.J. The Sb–Si (Antimony-Silicon) system. Bulletin of Alloy Phase Diagrams, 1985, 6, P. 445–448.
10. Murugasami R., Vivekanandhan P., Kumaran S., et.al. Simultaneous enhancement in thermoelectric performance and mechanical stability of p-type SiGe alloy doped with Boron prepared by mechanical alloying and spark plasma sintering. J. Alloys and Comp., 2019, 773, P. 752–761.
11. Chuvildeev V.N., Boldin M.S., Dyatlova Y.G., et.al. Comparative study of hot pressing and high-speed electropulse plasma sintering of Al2O3/ZrO2/Ti(C,N) powders. Russian Journal of Inorganic Chemistry, 2018, 60, P. 987–993.
12. Erofeeva I.V., Dorokhin M.V., Zdoroveyshchev A.V., et.al. Production of Si- and Ge-based thermoelectric materials by spark plasma sintering. Semiconductors, 2018, 52, P. 1559–1563.
13. Devyatkova E.D., Petrov A.V., Smirnov I.A., Moizhes B.Y. Fused silica as a reference material in measurements of thermal conductivity. Soviet Phys. Solid State, 1960, 2, P. 738–746.
14. Schaffler F., Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons, Inc., New York, 2001, 188 p.
Дополнительные файлы
|
1. Неозаглавлен | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(48KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
, , , , , , , , , . Наносистемы: физика, химия, математика. 2020;11(6):680–684. https://doi.org/10.17586/2220-8054-2020-11-6-680-684
For citation:
Dorokhin M.V., Demina P.B., Kuznetsov Yu.M., Erofeeva I.V., Zdoroveyshchev A.V., Boldin M.S., Lantsev E.A., Popov A.A., Uskova E.А., Trushin V.N. Nanostructured SiGe:Sb solid solutions with improved thermoelectric figure of merit. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):680–684. https://doi.org/10.17586/2220-8054-2020-11-6-680-684