Preview

Наносистемы: физика, химия, математика

Расширенный поиск

SANS studies of nanostructured low-melting metals at room temperature

https://doi.org/10.17586/2220-8054-2020-11-6-690-697

Аннотация

Nanocomposite materials (NCM) based on micro- and macroporous glasses containing nanoparticles of In, Sn and Pb into porous space have been studied by small-angle neutron scattering (SANS) at room temperature. The dependencies of fractal characteristics of metals embedded into the pores from the value of transferred impulse Q have been obtained. The existence of a critical spatial scale (15 – 16 nm) has been established, at which a change in the fractal characteristics of embedded metals takes plays. Distributions of pair correlation functions have been calculated for all types of the studied NCM. It is shown that in these NCM metals form the complicated space systems combining the crystalline and amorphous states of embedded metals.

Об авторах

A. Naberezhnov
Ioffe Institute
Россия


S. Borisov
Ioffe Institute
Россия


A. Fokin
Ioffe Institute
Россия


A. Islamov
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Россия


A. Kuklin
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Россия


Yu. Kumzerov
Ioffe Institute
Россия


Список литературы

1. Lee M.K., Tien C., et al. Structural variations in nanosized confined gallium. Physics Letters A, 2010, 374, P. 1570–1573.

2. Tanaka M., Takeguchi M., Furuya K. In situ observation of indium nanoparticles deposited on Si thin films by ultrahigh vacuum field emission transmission electron microscope. Surface Science, 1999, 433–435, P. 491–495.

3. Balamurugan B., Kruis F.E., et al. Size-induced stability and structural transition in monodispersed indium nanoparticles. Appl. Phys. Lett., 2005, 86, 083102.

4. Naberezhnov A.A., Sovestnov A.E., Fokin A.V. Crystal Structure of Indium and Lead under Confined Geometry Conditions. Technical Physics, 2011, 56 (5), P. 637–641.

5. Bonetti E., Pasquini L., et al. Vibrational density of states of nanocrystalline iron and nickel. Jour. Appl. Phys., 2000, 88 (8), P. 4571–4575.

6. Trampenau J., Bauszuz K., Petry W., Herr U. Vibrational behaviour of nanocrystalline Ni. Nanostruct. Mater., 1995, 6, P. 551–554.

7. Fultz B., Robertson J.L., et al. Phonon density of states of nanocrystalline Fe prepared by high-energy ball milling. J. Appl. Phys., 1996, 79, P. 8318–8322.

8. Suck J.B. Metallic Nanocrystals and Their Dynamical Properties. In: Gemming S., Schreiber M., Suck JB. (eds) Materials for Tomorrow. Springer Series in Materials Science, 2007, 93. Springer, Berlin, Heidelberg, 196 p.

9. Parshin P.P., Zemlyanov M.G., et al. Atomic Dynamics of Lead Introduced into Nanopores in Glass. JETP, 2011, 111 (6), P. 996–1002.

10. Parshin P.P., Zemlyanov M.G., et al. Atomic Dynamics of Tin Nanoparticles Embedded into Porous Glass. JETP, 2012, 114 (3), P. 440–450.

11. Borman V.D., Pushkin M.A., Tronin V.N., Troyan V.I. Evolution of the electronic properties of transition metal nanoclusters on graphite surface. JETP, 2010, 110 (6), P. 1005–1025.

12. Sovestnov A.E., Naberezhnov A.A., et al. Study of Palladium Nanoparticles Synthesized in Alkali Borosilicate Glass Pores by the X-Ray Line Shift Method. Physics of the Solid State, 2013, 55 (4), P. 837–841.

13. Balamurugana B., Maruyama T. Size-modified d bands and associated interband absorption of Ag nanoparticles. Jour. Appl. Phys., 2007, 102, 034306.

14. Rao C.N.R., Kulkarni G.U., et al. Metal nanoparticles, nanowires, and carbon nanotubes. Pure Appl. Chem., 2000, 72 (1–2), P. 21–33.

15. Kumzerov Yu.A., Naberezhnov A.A. Effect of restricted geometry on superconducting properties of low-melting metals (Review). Low Temperature Physics, 2016, 42 (11), P. 1028–1040.

16. Tien C., Wur C.S., et al. Double-step resistive superconducting transitions of indium and gallium in porous glass. Phys. Rev. B, 2000, 61 (21), P. 14833–14838.

17. Charnaya E.V., Tien C., Lee M.K., Kumzerov Yu.A. Superconductivity and structure of gallium under nanoconfinement. J. Phys.: Condens. Matter, 2009, 21, 455304.

18. Tien C., Charnaya E.V., et al. Vortex avalanches in a Pb-porous glass nanocomposite. Phys. Rev. B, 2011, 83, 014502.

19. Panova G.Kh., Nikonov A.A., Naberezhnov A.A., Fokin A.V. Resistance and Magnetic Susceptibility of Superconducting Lead Embedded in Nanopores of Glass. Physics of the Solid State, 2009, 51 (11), P. 2225–2229.

20. Shikov A.A., Zemlyanov M.G., et al. Superconducting Properties of Tin Embedded in Nanometer-Sized Pores of Glass. Physics of the Solid State, 2012, 54 (12), P. 2345–2350.

21. Enke D., Janowski F., Schwieger W. Porous glasses in the 21st century – a short review. Microporous and Mesoporous Materials, 2003, 60, P. 19–30.

22. Haller W. In Solid Phase Biochemistry, Scouten W.H. (Ed.), Wiley, New York, 1983, 535 p.

23. Kumzerov Yu.A., Nabereznov A.A., Savenko B.N., Vakhrushev S.B. Freezing and melting of mercury in porous glass. Phys. Rev. B, 1995, 52 (7), P. 4772–4774.

24. Golosovsky I.V., Delaplane R.G., Naberezhnov A.A., Kumzerov Yu.A. Thermal motions in lead confined within porous glass. Phys. Rev. B, 2004, 69, 132301.

25. Kibalin Y.A., Golosovsky I.V., et al. Neutron diffraction study of gallium nanostructured within a porous glass. Phys. Rev. B, 2012, 86, 024302.

26. Ostanevich Yu.M. Timeofflight smallangle scattering spectrometers on pulsed neutron sources. Makromol. Chem. Macromol. Symp., 1988, 15, P. 91–103.

27. Kuklin A.I., Islamov A.Kh., Gordeliy V.I. Two-detector System for Small-Angle Neutron Scattering Instrument. Neutron News, 2005, 16, P. 16–18.

28. Soloviev A.G., Solovieva T.M., et al. SAS. The package for Small-Angle Neutron Scattering Data Treatment. Version 2.4. Long Write-Up and User‘s Guide. JINR Communication, 2003, P10-2003-86, 24 p.

29. Soloviev A.G., Solovjeva T.M., et al. SAS program for two-detector system: seamless curve from both detectors. Journal of Physics: Conf. Series, 2017, 848 (1), 012020.

30. Bale H.D., Schmidt P.W. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett., 1984, 53, P. 596–599.

31. Teixeira J. Small-angle scattering by fractal systems. J. Appl. Crystallogr., 1988, 21, P. 781–785.

32. Neutron/X-ray Scattering Length Density Calculator. URL: https://sld-calculator.appspot.com.

33. Franke D., Petoukhov M.V., et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Cryst., 2017, 50, P. 1212–1225.

34. Feigin L.A., Svergun D.I. Structure Analysis by Small Angle X Ray and Neutron Scattering, Princeton, New Jersey, 1987, 335 p.

35. Levitz P., Ehret G., Sinha S.K., Drake J.M. Porous vycor glass: The microstructure as probed by electron microscopy, direct energy transfer, smallangle scattering, and molecular adsorption. Jour. Chem. Phys., 1991, 95, 6151.

36. Naberezhnov A.A., Vakhrushev S.B., Okuneva N.M., Sysoeva A.A. SANS studies of nanocomposites Sodium nitrite + Porous glasses. Ferroelectrics, 2019, 539 (1), P. 16–21.

37. Hohr A., Neumann H.-B., et al. Fractal surface and cluster structure of controlled-pore glasses and Vycor porous glass as revealed by small-angle x-ray and neutron scattering. Phys. Rev. B, 1988, 38 (2), P. 1462–1467.

38. Wiltzius P., Bates F.S., Dierker S.B., Wignall G.D. Structure of porous Vycor glass. Phys. Rev A Gen. Phys., 1987, 36 (6), 2991.

39. Cahn J.W. On spinodal decomposition. Acta Metall., 1961, 9 (9), 795.

40. Surface tension of metals in liquid state. URL: https://tehtab.ru/Guide/GuidePhysics/SurfaceTension/SurfaceTensionOfLiquidMetall [In Russian]

41. Grannan D.M., Carland J.C., Tanner D.B. Critical Behavior of the Dielectric Constant of a Random Composite near the Percolation Threshold. Phys. Rev. Lett., 1981, 46 (5), P. 375–378.

42. Tien C., Wur C.S., et al. Double-step resistive superconducting transitions of indium and gallium in porous glass. Phys. Rev. B, 2000, 61 (21), P. 14833–14838.


Дополнительные файлы

1. Неозаглавлен
Тема
Тип Исследовательские инструменты
Посмотреть (173KB)    
Метаданные ▾

Рецензия

Для цитирования:


 ,  ,  ,  ,  ,   . Наносистемы: физика, химия, математика. 2020;11(6):690–697. https://doi.org/10.17586/2220-8054-2020-11-6-690-697

For citation:


Naberezhnov A.A., Borisov S.A., Fokin A.V., Islamov A.Kh., Kuklin A.I., Kumzerov Yu.A. SANS studies of nanostructured low-melting metals at room temperature. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):690–697. https://doi.org/10.17586/2220-8054-2020-11-6-690-697

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)