Sol-gel synthesis and the investigation of the properties of nanocrystalline holmium orthoferrite
https://doi.org/10.17586/2220-8054-2020-11-6-698-704
Abstract
Holmium orthoferrite nanocrystals (HoFeO3) were synthesized from an aqueous solution by the sol-gel method, using polyvinyl alcohol as a stabilizer and annealing at temperatures of 650, 750, and 850 ◦C for an hour. According to the results of the performed analyses, it was found that with an increase in the annealing temperature, the average size of HoFeO3 crystallites increases from 24 to 30 nm. The magnetic characteristics of the samples were measured and it was shown that holmium orthoferrite is a paramagnet with a low coercive force. The band gap of nanocrystalline holmium ferrite is determined.
Keywords
About the Authors
A. T. NguyenViet Nam
Ho Chi Minh City 700000
H.L.T. Tran
Viet Nam
Ho Chi Minh City 700000
Ph.U.T. Nguyen
Viet Nam
Ho Chi Minh City 700000
I. Ya. Mittova
Russian Federation
Universitetskaya pl. 1, Voronezh, 394018
V. O. Mittova
Russian Federation
Voronezh, 394036
E. L. Viryutina
Russian Federation
Universitetskaya pl. 1, Voronezh, 394018
V. H. Nguyen
Viet Nam
Cao Lanh City 81000
X. V. Bui
Viet Nam
Ho Chi Minh City, 700000
T. L. Nguyen
Viet Nam
Ho Chi Minh City, 700000
Da Nang, 550000
References
1. Habib Z., Majid K., et al. Influence of Ni subsmitution at B-site for Fe3+ ions on morphological, optical, and magnetic properties of HoFeO3 ceramics. Applied Physics A. Materials Science & Processing, 2016, 122 (5), P. 550–557.
2. Shao M., Cao Sh., et al. Single crystal growth, magnetic properties and Schottky anomaly of HoFeO3 orthoferrite. Journal of Crystal Growth, 2011, 318 (1), P. 947–950.
3. Kondrashkova I.S., Martinson K.D., Zakharova N.V., Popkov V.I. Synthesis of nanocrystalline HoFeO3photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry, 2018, 88 (12), P. 2465–2471.
4. Martinson K.D., Kondrashkova I.S., et al. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of nhexane conversion. Advanced Powder Technology, 2020, 31 (1), P. 402–408.
5. Mushtaq M.W., Imran M., et al. Synthesis, structural and biological studies of cobalt ferrite nanoparticles. Bulgarian Chemical Communications, 2016, 48 (3), P. 565–570.
6. Nikiforov V.N., Filinova E.Yu. Biomedical applications of the magnetic nanoparticles. In book: Magnetic Nanoparticles, Wiley-VCH Verlag GmbH & CO. KGaA, Weinheim, 2009, 10, P. 393–455.
7. Gu H., Xu K., Xu C., Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 2006, 37 (9), P. 941–949.
8. Albadi Y. Popkov V.I. Dual-modal contrast agent for magnetic resonance imaging based on gadolinium orthoferrite nanoparticles: synthesis, structure and application prospects. Medicine: theory and practice, 2019, 4 (S), P. 35–36.
9. Albadi Y., Martinson K.D., et al. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: the effect of strong agglomeration on the magnetic behavior. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (2), P. 252–259.
10. Zhou Zh., Guo L., et al. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites, Journal of Alloys and Compounds, 2014, 583, P. 21–31.
11. Park T., Papaefthymiou G.C., et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Letters, 2007, 7 (3), P. 766–772.
12. Lomanova N.A., Tomkovich M.V., et al. Magnetic properties of Bi1−xCaxFeO3−δ nanocrystals. Physics of the Solid State, 2019, 61, P. 2535– 2541.
13. Martinson K.D., Ivanov V.A., et al. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (6), P. 694–700.
14. Kovalenko A.N., Tugova E.A. Thermodynamics and kinetics of non-autonomous phases formation in nanostructured materials with variable functional properties. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (5), P. 641–662.
15. Popkov V.I., Almjasheva O.V., et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. Journal of Materials Science: Materials in Electronics, 2017, 28 (10), P. 7163–7170.
16. Lomanova N.A., Tomkovich M.V., et al. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. Journal of Nanoparticle Research, 2018, 20 (2).
17. Dmitriev A.V., Vladimirova E.V., et al. Synthesis of hollow spheres of BiFeO3 from nitrate solutions with tartaric acid: Morphology and magnetic properties. Journal of Alloys and Compounds, 2019, 77 (10), P. 586–592.
18. Tomina E.V., Kurkin N.A., Mal’tsev S.A. Microwave synthesis of yttrium orthoferrite doped with nickel. Condensed Matter and Interphases, 2019, 21 (2), P. 306–312.
19. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018,9 (4), P. 568–572.
20. Nguyen T.A., Almjasheva O.V., et al. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorganic Materials, 2009, 45 (11), P. 1304– 1308.
21. Popkov V.I., Almyasheva O.V., Schmidt M.P., Gusarov V.V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, 85 (6), P. 1370–1375.
22. Nguyen T.A., Mittova I.Ya., et al. Sol-gel preparation and magnetic properties of nanocrystalline lanthanum ferrite. Russian Journal of General Chemistry, 2014, 84 (7), P. 1261–1264.
23. Proskurina O.V., Abiev R.S., et al. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impingingjets microreactor. Chemical Engineering and Processing – Process Intensification, 2019, 143, 107598.
24. Proskurina O.V., Nogovitsin I.V., et al. Formation of BiFeO3 Nanoparticles Using Impinging Jets Microreactor. Russian Journal of General Chemistry, 2018, 88 (10), P. 2139–2143.
25. Gusarov V.V., Almjasheva O.V. Nanomaterials: properties and promising applications. Scientific world publishing house, Moscow, 2014, P. 378–403.
26. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russian Journal of Applied Chemistry, 2017, 90 (8), P. 1214–1218.
27. Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 647–653.
28. Popkov V.I., Almjasheva O.V., et al. Crystallization behaviour and morphological features of YFeO3 nanocrystallites obtained by glycinenitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 866–874.
29. Popkov V.I., Almjasheva O.V., et al. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceramics International, 2018, 44 (17), P. 20906–20912.
30. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the GlycineNitrate Combustion Method. Russian Journal of General Chemistry, 2016, 86 (10), P. 2256–2262.
31. Nguyen T.A., Nguyen T.Tr.L., et al. Optical and magnetic properties of HoFeO3 nanocrystals prepared by a simple co-precipitation method using ethanol. Journal of Alloys and Compounds, 2020, 834, P. 155098–155103.
32. Jiang L., Liu W., et al. Low-temperature combustion synthesis of nanocrystalline powders via a sol–gel method using glycin. Ceramics International, 2012, 38 (5), P. 3667–3672.
33. Luu M.D., Dao N.N., et al. Sol-gel synthesis of LaFeO3 nanomaterials with perovskite structure. Vietnam Journal of Chemistry, 2014, 52 (1), P. 130–134.
34. JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 File, ICDD, 1997.
35. Patterson A.L. The Scherer formula for X-ray particle size determination. Physics Review, 1939, 56 (10), P. 978–982.
36. Nguyen T.A., Chau H.D., et al. Structural and magnetic properties of YFe1−xCoxO3 (0.1≤ x ≤0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (3), P. 424–429.
37. Nguyen T.A., Nguyen V.Y., et al. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (4), P. 468–473.
38. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented aggregation of particles: 100 years of investigations of non-classical crystal growth. Chemical Reviews, 2014, 83 (12), P. 1204–1222.
39. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Journal of General Chemistry, 2017, 87 (11), P. 2516–2524.
40. Almjasheva O.V., Gusarov V.V. Metastable Clusters and Aggregative Nucleation Mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (3), P. 405–416.
41. Almjasheva O.V., Fedorov B.A., Smirnov A.V., Gusarov V.V. Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1 (1), P. 26–37.
42. Bhat M., Kaur B., et al. Swift heavy ion irradiation effects on structural and magnetic characteristics of RFeO3 (R = Er, Ho and Y) crystals. Nuclear Instruments and Methods in Physics Research B, 2006, 243, P. 134–142.
43. Nguyen T.A., Pham V., et al. Simple synthesis of NdFeO3 nanoparticles by the so-precipitation method based on a study of thermal behaviors of Fe (III) and Nd (III) hydroxides. Crystals, 2020, 10 (3), P. 219–227.
44. Sasikala C., Durairaj N., et al. Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structure and magnetic properties. Journal of Alloys and Compounds, 2017, 712, P. 870–877.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(42KB)
|
Indexing metadata ▾ |
Review
For citations:
Nguyen A.T., Tran H., Nguyen P., Mittova I.Ya., Mittova V.O., Viryutina E.L., Nguyen V.H., Bui X.V., Nguyen T.L. Sol-gel synthesis and the investigation of the properties of nanocrystalline holmium orthoferrite. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):698–704. https://doi.org/10.17586/2220-8054-2020-11-6-698-704