Perovskite solar cells: recent progress and future prospects
https://doi.org/10.17586/2220-8054-2020-11-6-716-728
Abstract
Nanotechnologies and nanostructured materials are attracting significant attention as most promising candidates for achieving drastic improvement of solar energy conversion efficiency in next-generation nanostructured-based perovskite solar cells (PSCs). In this review, we focus on the latest achievements in construction of efficient PSCs and describe new trends in perovskite solar photovoltaics including the development of high-performance perovskite-silicon tandem solar cells, inorganic PSCs with stabilized efficiency and a new generation of PSCs for low lighting conditions that opens great possibilities for indoor applications. A special attention is paid also to the development of new types of efficient photoelectrodes for PSCs based on very large band gap metal oxides.
Keywords
About the Author
O. I. ShevaleevskiyRussian Federation
Kosygin St. 4, Moscow, 119334
References
1. Yin J., Molini A., Porporato A. Impacts of solar intermittency on future photovoltaic reliability. Nature Communications, 2020, 11, 4781.
2. Shi Z., Jayatissa A.H. Perovskite solar cells: from the atomic level to film quality and device performance. Materials, 2018, 57, P. 2554–2569.
3. Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131, P. 6050–6051.
4. Kim H.S., Lee C.R., et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2, 591, P. 1–7.
5. Burschka J., Pellet N., et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, P. 316– 319.
6. Im J.H., Lee C. R., et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3, P. 4088–4093.
7. Lee M.M., Teuscher J., et al. Efficient hybrid solar cells based on meso-superstructuredorganometal halide perovskites. Science, 2012, 338, P. 643–647.
8. Ahn N., Son D.-Y., et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc., 2015, 137, P. 8696–8699.
9. Park N.-G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Aenerg. Mater., 2019, 13, 1903106.
10. Jeon N.J., Noh J.H., et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 2014, 13, P. 897–903.
11. Kim H.S., Lee C.R., et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2, 591.
12. Song Z., Watthage S.C., et al. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photon. Energ., 2016, 6, 022001.
13. Nazeeruddin M.K., Snaith H. Methylammoniumlead triiodide perovskite solar cells: a new paradigm in photovoltaics. MRS Bulletin, 2015, 40, P. 641–645.
14. Saliba M., Matsui T., et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energ. Environ. Sci., 2016, 9, P. 1989–1997.
15. Saliba M., Matsui T., et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, P. 206–209.
16. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing, URL: https://www.nrel.gov/docs/ fy19osti/72134.pdf.
17. Shin S.S., Yeom E.J., et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable PSCs. Science, 2017, 356, P. 167–171.
18. Quiroz R.C.O., Shen Y., et al. Balancing electrical and optical losses for efficient 4-terminal Si–PSCs with solution processed percolation electrodes. J. Mater. Chem. A, 2018, 6, P. 3583–3592.
19. Kumar M.H., Yantara N., et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun., 2013, 49, P. 11089–11091.
20. Shi Z., Jayatissa A.H. Perovskite-based solar cells: a review of recent progress, materials and processing methods. Materials, 2018, 11, 729.
21. Cui, J., Yuan, H., et al. Recent progress in efficient hybrid lead halide PSCs. Sci. Technol. Adv. Mater., 2015, 16, 036004.
22. Yang W.S., Noh J.H., et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, P. 1234–1237.
23. Shin S.S., Yeom E.J., et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable PSCs. Science, 2017, 356, P. 167–171.
24. Rohatgi A., Zhu K., et al. 26.7% efficient 4-terminal perovskite–silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiOx passivating contact silicon cell. IEEE Journal of Potovoltaics, 2020, 10, P. 417–422.
25. Leo K. Perovskite photovoltaics: signs of stability. Nat. Nanotechnol., 2015, 10, P. 574–575.
26. Burschka J., Pellet N., et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, P. 316– 319.
27. Liu M., Johnston M.B., Snaith H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, P. 305–398.
28. Li X., Dar M.I., et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ωammonium chlorides. Nat. Chem., 2015, 7, P. 703–711.
29. Jeon N.J., Noh J.H., et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 2014, 13, P. 897–903.
30. Ahn N., Son D.-Y., et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc., 2015, 137, P. 8696–8699.
31. Park N.-G., Gratzel M., et al. Towards stable and commercially available perovskite solar cells.¨ Nat. Energ., 2016, 1, 16152.
32. Jeon N.J., Noh J.H., et al. Compositional engineering of perovskite materials for high performance solar cells. Nature, 2015, 517, P. 476–480.
33. Yang W.S., Noh J.H., et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, P. 1234–1237.
34. Nazeeruddin M.K., Snaith H. Methylammoniumlead triiodide perovskite solar cells: a new paradigm in photovoltaics. MRS Bulletin, 2015, 40, P. 641–645.
35. Song Z., Watthage S.C., et al. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photon. Energ., 2016, 6, 022001.
36. Sahli F., Werner J., et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater., 2018, 17, P. 820–826.
37. Nogay G.,Sahli F., et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett., 2019, 4, P. 844–849.
38. Zhou Y., Zhu K. Perovskite solar cells shine in the “Valley of the Sun”. ACS Energ. Lett., 2016, 1, P. 64–67.
39. Schoonman J., Organic-inorganic lead halide perovskite solar cell materials: a possible stability problem. Chem. Phys. Lett., 2015, 619, P. 193–195.
40. Akbulatov A.F., LuchkinS.Yu., et al. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. J. Phys. Chem. Lett., 2017, 8, P. 1211–1218.
41. Adonin S.A., Froliva L.A., et al. Hybrid solar cells: antimony (V) complex halides: lead-free perovskite-like materials for hybrid solar cells. Adv. Energy Mater., 2018, 8, 1870026.
42. Swarnkar A., Marshall A.R., et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354, P. 92–95.
43. Spurgeon S.R., Du Y., et al. Competing pathways for nucleation of the double perovskite structure in the epitaxial synthesis of La2MnNiO6. Chem. Mater., 2016, 28, P. 3814–3822.
44. Sheikh M.S., Ghosh D., et al. Lead free double perovskite oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application. Mater. Sci. Eng. B, 2017, 226, P. 10–17.
45. Lan C., Zhao S., et al. Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell. J. Alloy. Compd., 2016, 655, P. 208–214.
46. Sheikh M.S., Sakhya A.P., et al. Light induced charge transport in La2NiMnO6-based Schottky diode. J. Alloy. Compd., 2017, 727, P. 238–245.
47. Barbosa D.A.B., Lufaso M.W., et al. Ba-doping effects on structural, magnetic and vibrational properties of disordered La2NiMnO6. J. Alloy. Compd., 2016, 663, P. 899–905.
48. Montcada N.F., Mar´ın-Beloqui J.M., et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Lett., 2017, 2, P. 182–187.
49. Zhang N., Chen D., et al. Enhanced visible light photocatalytic activity of Gd doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep., 2016, 6, 26467.
50. Freitag M., Teuscher, J., et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics, 2017, 11, P. 372–378.
51. Juang S.S.Y., Lin P.Y., et al. Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells. Frontiers in Chemistry, 2019, 7, 00209.
52. Chen C.Y., Chang, J.H., et al. Perovskite photovoltaics for dim-light applications. Adv. Funct. Mater., 2015, 25, P. 7064–7070.
53. Biswas S., Kim H. Solar cells for indoor applications: progress and development. Polymers, 2020, 12, 1338.
54. Lim J., Kwon H., et al. Unprecedentedly high indoor performance (efficiency >34 %) of perovskite photovoltaics with controlled bromine doping. Nano Energy, 2020, 75, 104984.
55. Double-sided solar photoconverter (options). Varfolomeev S.D., Todinova A.V., Shevaleevskiy O.I. Patent. RU 2531768: MPK H01 L 31/04, 27.10.2014, Issue 30, P. 7.
56. Mathew S., Yella A., et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014, 6, P. 242–247.
57. Saygili Y., Soberger M., et al. Copper bipyridyl redox mediators for dye-sensitized solar cells with high photovoltage. J. Am. Chem. Soc., 2016, 138, P. 15087–15096.
58. Michaels H., Rinderle M., et al. Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chem Sci., 2020, 11, P. 2895–2906.
59. Sakamoto R., Katagiri S., et al. Electron transport dynamics in redox-molecule-terminated branched oligomer wires on Au(111). J. Am. Chem. Soc., 2015, 137, P. 734–741.
60. Mathews I., King P.J., et al. Performance of III–IV solar cells as indoor light energy harvesters. IEEE J. Photovolt., 2016,6, P. 230–235.
61. Barber G., Hoertz P.G., et al. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system. J. Phys. Chem. Lett., 2011, 2, P. 581–585.
62. Lechene B., Cowell P. et al. Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy, 2016,26, P. 631–640.
63. Minnaert B., Veelaert P., et al. A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications. Energies, 2014, 7, P. 1500–1516.
64. Freunek M., Freunek M., Reindtl L.M. Maximum efficiencies of indoor photovoltaic devices.IEEE J. Photovoltaics, 2013, 3, P. 59–64.
65. Apostolou G., Reiders A., Verwaal M. Comparison of the indoor performance of 12 commercial PV products by a simple mode. Energy Science & Engineering, 2016, 4, P. 69–85.
66. Su T.S., Hsieh T.Y., et al. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Scientific reports, 2015, 5, 16098.
67. Murugadoss G., Mizuta G., et al. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: enhancement of perovskite crystal transformation and prohibition of short circuiting. APL Materials, 2014, 2, 081511.
68. Kozlov S., Nikolskaia A., et al. Rare earth and Nb doping of TiO2 nanocrystalline mesoscopic layers for high efficiency dye sensitized solar cells. Physica status solidi A, 2016, 213, P. 1801–1806.
69. Tsvetkov N., Larina L., Shevaleevskiy O., Ahn B.T. Electronic structure study of lightly Nb doped TiO2 electrode for dye sensitized solar cells. Energ. Environ. Sci., 2011, 4, P. 1480–1486.
70. Tsvetkov N.A., Larina L.L., et al. Design of conduction band structure of TiO2 electrode using Nb doping for highly efficient dye sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, P. 904–911.
71. Kozlov S., Nikolskaia A., et al. Rare earth and Nb doping of TiO2 nanocrystalline mesoscopic layers for high efficiency dye-sensitized solar cells. Phys. St. Sol. A, 2016, 213, P. 1801–1806.
72. Vildanova M.F., Kozlov S.S., Nikolskaia A.B., Shevaleevskiy O.I. Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: Phys. Chem. Math., 2017, 8, P. 540–545.
73. Shevaleevskiy O.I., Nikolskaya A.B., et al. Nanostructured TiO2 films with a Mixed Phase for Perovskite Solar Cells. Rus. J. Phys. Chem. B, 2018, 12, P. 663–668.
74. Rath M.S., Ramakrishna G., Mukherjee T., Ghosh H.N. Electron injection into the surface states of ZrO2 nanoparticles from photoexcitedquinizarin and its derivatives: effect of surface modification. J. Phys. Chem. B, 2005, 109, P. 20485–20492.
75. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Phys. Chem. Math., 2013, 4, P. 810–815.
76. Larina L.L., Alexeeva O.V., et al. Very wide-band gap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Phys. Chem. Math., 2019, 10, P. 70–75.
77. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of coreshell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2018, 9, P. 568–572.
78. Choi Y., Kim C.U., et. al. Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives. Nano Energy, 2019, 65, 104044.
79. Nikolskaia A.B.,Vildanova M.F., Kozlov S.S., Shevaleevskiy O.I., Two-terminal tandem solar cells DSC/c-Si: optimization of TiO2-based photoelectrode parameters. Semiconductors, 2018, 52, P. 88–92.
80. Vildanova M.F., Nikolskaia A.B., Kozlov S.S., Shevaleevskiy O.I. Novel types of dye-sensitized and perovskite-based tandem solar cells with a common counter electrode. Technical Physics Letters, 2018, 44, P. 126–129.
81. Wali Q., Elumalai N.K., et al. Tandem perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 84, P. 89–110.
82. Quiroz C.O., Shen, Y., et al. Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. J. Mater. Chem. B, 2018, 6, P. 3583–3592.
83. Jaysankar M., Filipic M., et al. Perovskite–silicon tandem solar modules with optimised light harvesting. Energ. Environ. Sci., 2018, 11, P. 1489–1498.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(48KB)
|
Indexing metadata ▾ |
Review
For citations:
Shevaleevskiy O.I. Perovskite solar cells: recent progress and future prospects. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):716–728. https://doi.org/10.17586/2220-8054-2020-11-6-716-728