Structure of nanoparticles in the ZrO2–Y2O3 system, as obtained under hydrothermal conditions
https://doi.org/10.17586/2220-8054-2020-11-6-729-738
Abstract
It is shown that monocrystalline nanoparticles with fluorite structure are formed in the ZrO2–Y2O3 system, under hydrothermal conditions. The limiting content of Y2O3 in the nanocrystals based on zirconium dioxide is 21.7–22.6 mol.%. Yttrium oxide not included in the structure forms an amorphous phase, which is stable even upon thermal treatment at 1000–1300 ◦C. It has been found that under hydrothermal conditions the structure of the nanocrystals based on ZrO2(Y2O3) solid solution includes water, its content depending on yttrium oxide concentration in the solid solution.
About the Authors
A. I. ShuklinaRussian Federation
ul. Professora Popova, 5, Saint Petersburg, 197376
A. V. Smirnov
Russian Federation
Kronverksky Pr. 49, bldg. A, Saint Petersburg, 197101
B. A. Fedorov
Russian Federation
Kronverksky Pr. 49, bldg. A, Saint Petersburg, 197101
S. A. Kirillova
Russian Federation
ul. Professora Popova, 5, Saint Petersburg, 197376
O. V. Almjasheva
Russian Federation
Politekhnicheskaya St. 26, Saint Petersburg, 194021
References
1. Degtyarev S.A., Voronin G.F. Solution of ill-posed problems in thermodynamics of phase equilibria. The ZrO2–Y2O3 system. Calphad, 1988, 12(1), P. 73–82.
2. Stubican V.S., Hink R.C., Ray S.P. Phase equilibria and ordering in the system ZrO2–Y2O3. J. Am. Ceram. Soc., 1978, 61(1-2), P. 17–21.
3. Srivastava K.K., Patil R.N., Choudhary C.B., Gokhale K.V.G.K., Subbarao E.C. Revised phase diagram of the system ZrO2–YO1.5. Trans. J. Br. Ceram. Soc., 1974, 73(5), P. 85–91.
4. Andrievskaya E.R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc., 2008, 28, P. 2363–2388.
5. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(6), P. 810.
6. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by condition of hydrothermal synthesis. Russian Journal of General Chemistry, 1999, 69(8), P. 1219–1222.
7. Yapryntsev A.D., Baranchikov A.E., Gubanova N.N., Ivanov V.K., Tret’yakov Yu.D. Synthesis of nanocrystalline ZrO2 with tailored phase composition and microstructure under high-power sonication. Inorganic Materials, 2012, 48(5), P. 494–499.
8. Wang H., Li G., Xue Y., Li L. Hydrated surface structure and its impacts on the stabilization of t-ZrO2. Journal of Solid State Chemistry, 2007, 180(10), P. 2790–2797.
9. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.R. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian Journal of Inorganic Chemistry, 2007, 52(11), P. 1648-1656.
10. Ivanov V.K., Baranov A.N., Oleinikov N.N., Tret’yakov Y.D. Fractal Surfaces of ZrO2, WO3 and CeO2. Powders. Inorganic materials, 2002, 38(12), P. 1224–1227.
11. Taguchi M., Nakaneb T., Matsushitab A., Sakkab Y., Uchikoshib T., Funazukuria T., Nakab T. One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions. The Journal of Supercritical Fluids, 2014, 85, P. 57–61.
12. Stenina I.A., Voropaeva E.Y., Veresov A.G., Kapustin G.I., Yaroslavtsev A.B. Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide. Russian Journal of Inorganic Chemistry, 2008, 53(3), P. 350–356.
13. Glushkova, V.B., Lapshin, A.V., Vershinin, A.A. et al. Phase formation of zirconia-based solid solutions synthesized from peroxides. Glass Physics and Chemistry, 2004, 30(6), P. 558–563.
14. Zhang Y., Li A., Yan Z., Xu G., Liao C., Yan C. (ZrO2)0.85(ReO1.5)0.15 (Re = Sc, Y) solid solutions prepared via three Pechini-type gel routes: 1-gel formation and calcination behaviors. Journal of Solid State Chemistry, 2003, 171, P. 434–438.
15. Popov V.V., Menushenkov A.P., Yastrebtsev A.A., Arzhatkina L.A., Tsarenko N.A., Shchetinin I.V., Zheleznyi M.V., Ponkratov K.V. Regularities of formation of complex oxides with the fluorite structure in the ZrO2–Y2O3 system. Russian Journal of Inorganic Chemistry, 2017, 62(9), P. 1147–1154.
16. Almjasheva O.V., Gusarov V.V., Danilevich Ya.B., Kovalenko A.N., Ugolkov V.L. Nanocrystals of ZrO2 as sorption heat accumulators. Glass Physics and Chemistry, 2007, 33(6), P. 587–589.
17. Fokin B.S., Belenkiy M.Ya., Almjashev V.I., Khabensky V.B., Almjasheva O.V., Gusarov V.V. Critical heat flux in a boiling aqueous dispersion of nanoparticles. Technical Physics Letters, 2009, 35(5), P. 440–442.
18. Kablov E.N., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Karachevtsev F.N. Thermodynamics and vaporization of ceramics based on the Y2O3-ZrO2 system studied by KEMS. Journal of Alloys and Compounds, 2019, 794, P. 606–614.
19. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(2), P. 164–175.
20. Vildanova M.F., Nikolskaia A.B., Kozlov S.S., Karyagina O.K., Larina L.L., Shevaleevskiy O.I., Almjasheva O.V., Gusarov V.V. Nanostructured ZrO2–Y2O3-based system for perovskite solar cells. Doklady Physical Chemistry, 2019, 484(2), P. 36–38.
21. Larina L.L., Alexeeva O.V., Almjasheva O.V., V.V. Gusarov, Kozlov S.S., Nikolskaia A.B., Vildanova M.F., Shevaleevskiy O.I. Very widebandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 70– 74.
22. Zadorozhnaya O.Y., Napochatov Y.K., Agarkova E.A., Tiunova O.V. Layered solid-electrolyte membranes based on zirconia: production technology. Russian Journal of Electrochemistry, 2020, 56(2), P. 124–131.
23. Kalinina, E.G., Pikalova, E.Y. Preparation and properties of stable suspensions of ZrO2–Y2O3 powders with different particle sizes for electrophoretic deposition. Inorganic Materials, 2020, 56(9), P. 941–948.
24. Rylski A., Siczek K. The effect of addition of nanoparticles, especially ZrO2-based, on tribological behavior of lubricants. Lubricants, 2020, 8(3), P. 1-25.
25. Hu C., Sun J., Long C., Wu L., Zhou C., Zhang X. Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev., 2019, 8(1), P. 396–404.
26. Bumajdad A., Nazeer A.A., Al Sagheer F, Nahar S. Zaki Mohamed I. Controlled synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films. Scientific Rrports, 2018, 8, P. 3695.
27. Precious-Ayanwale A, Donohue-Cornejo A., Cuevas-Gonz´ alez J.C., Espinosa-Crist´ obal L.F., Reyes-L´ opez S.Y. Review of the synthesis,´ characterization and application of zirconia mixed metal oxide nanoparticles. International Journal of Research – GRANTHAALAYAH, 2018, 6(8), P. 136–145.
28. Almjasheva O.V., Smirnov A.V., Fedorov B. A., Tomkovich M.V., Gusarov V.V. Structural features of ZrO2–Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russian Journal of General Chemistry, 2014, 84(5), P. 804–809.
29. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(4), P. 568–572.
30. Tomkovich M.V., Andrievskaya E.R., Gusarov V.V. Formation under hydrothermal condition and structural features of nanoparticles based on the system ZrO2 – Gd2O3. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2(2), P. 139.
31. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of hydrothermal treatment conditions on the formation of lanthanum orthophosphate nanoparticles of monazite structure, Russian Journal of Applied Chemistry, 2020, 93(4), P. 540–548.
32. Popkov V.I., Bachina A.K., Valeeva A.A., Lobinsky A.A., Gerasimov E.Y., Rempel A.A. Synthesis, morphology and electrochemical properties of spherulite titania nanocrystals. Ceramics International, 46(15), P. 24483–24487.
33. Guinier A., Fournet G. Small-angle Scattering of X-rays. New-York, Wiley, 1955. 268 .
34. Kuchko A.V., Smirnov A.V. The computation of the nanoparticles volume distribution function and the specific surface area based on the small-angle x-ray scattering indicatrix by the meyhod of the statistical regularization. Nanosystems: Physics, Chemistry, Mathematics, 2012, 3(3), P. 76–91.
35. Fabregas I.O., Craievich A.F., Fantini M.C.A., Millen R.P., Temperini M.L.A, Lamas D.G. Tetragonal-cubic phase boundary in nanocrystalline ZrO2–Y2O3 solid solutions synthesized by gel-combustion. Journal of Alloys and Compounds, 2011, 509, P. 5177–5182.
36. Dell’Agli G., Mascolo G. Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc., 2000, 20(2), P. 139– 145.
37. Kim D.-J. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J. Am. Ceram. Soc., 1989, 72(8), P. 1415–1421.
38. Almjasheva O.V., Gusarov V.V. Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2-Al2O3-H2O system. Russian Journal Inorganic Chemistry, 2007, 52(8), P. 1194–1200.
39. Al’myashev O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russian Journal of General Chemistry, 2010, 80(3), P. 385–390.
40. Al’myasheva O.V., Ugolkov V.L., Gusarov V.V. Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles, Russian Journal of Applied Chemistry, 2008, 81(4), P. 609–613.
41. Almjasheva O.V., Denisova T.A. Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations. Russian Journal of General Chemistry, 2017, 87(1), P. 1–7.
42. Amorphous Metallic Alloys, Ed. by F.E. Lyuborsky (Butterworths, London, 1983; Metallurgiya, Moscow, 1987).
43. Gabelkov S.V., Tarasov R.V., Poltavtsev N.S., Logvinkov D.S., Mironova A.G. Phase transformation in the nanocrystallization of amorphous zirconium oxide. Questions of atomic science and technology. Series: Physics of radiation damage and radiation materials science 2004, 3, P. 116–120. (in Russian)
44. Klevtsov P.V., Klevtsova R.F., Sheina L.P. Crystalline yttrium hydroxides. Journal of Structural Chemistry, 1965, 5(4), P. 536–541.
45. Klevtsova R.F., Klevtsov P.V. The crystal structure of YOOH. J. Struct. Chem., 1965, 5, P. 795–797.
46. Christensen A.N. A Reinvestigation of the Crystal structure of YOOH. Acta Chem. Scand, 1965, 19(6), P. 1504–1505.
47. Landolt-Bornstein – Group III Condensed Matter 7b1. Ed by K.-H. Hellwege, A.M. Hellwege – Key Element O. Part 1.1975, Springer-Verlag¨ Berlin Heidelberg.
48. Christensen A.N., Hazell R.G., Nilsson A. Hydrothermal investigation of the systems Y2O3-H2O-Na2O, Y2O3-D2O-Na2O, Y2O3-H2O, and Y2O3-H2O-NH3. Acta Chem. Scand., 1967, 21(2), P. 481–492.
49. Schubert K., Seitz A. Kristallstruktur von Y(OH)3. Zeitschrift fur anorganische und allgemeine Chemie (ZAAC), 1947,¨ 254(12), P. 116–125.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(87KB)
|
Indexing metadata ▾ |
Review
For citations:
Shuklina A.I., Smirnov A.V., Fedorov B.A., Kirillova S.A., Almjasheva O.V. Structure of nanoparticles in the ZrO2–Y2O3 system, as obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):729–738. https://doi.org/10.17586/2220-8054-2020-11-6-729-738