Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Positive fixed points of Lyapunov operator

https://doi.org/10.17586/2220-8054-2020-11-4-373-378

Аннотация

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. [0,1]) set of spin values on the Cayley tree of order two.

Об авторах

R. Ganikhodjaev
National University of Uzbekistan
Узбекистан


R. Kucharov
National University of Uzbekistan
Узбекистан


K. Aralova
National University of Uzbekistan
Узбекистан


Список литературы

1. Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems (Russian). Theor. and Math. Phys., 1975, 25), P. 358–369.

2. Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems. Continuation (Russian). Theor. and Math. Phys., 1976, 26, P. 61–76.

3. Sinai Ya.G. Theory of phase transitions: Rigorous Results, Pergamon, Oxford, 1982.

4. Kotecky R., Shlosman S.B. First-order phase transition in large entropy lattice models. Commun. Math. Phys., 1982, 83, P. 493–515.

5. Mazel A., Suhov Y., Stuhl I. A classical WR model with q particle types. J.Stat.Phys., 2015, 159, P. 1040–1086.

6. Mazel A., Suhov Y., Stuhl I., Zohren S. Dominance of most tolerant species in multi-type lattice Widom-Rowlinson models. Journ. Stat. Mech., 2014, P. 08010.

7. Eshkabilov Yu.Kh., Haydarov F.H. On positive solutions of the homogeneous Hammerstein integral equation. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 618–627.

8. Eshkabilov Yu.Kh., Rozikov U.A,Haydarov F.H. Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley Tree. Journal Statistical Physics, 2012, 147, P. 779–794.

9. Eshkabilov Yu.Kh., Rozikov U.A, Haydarov F.H. Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. Math.Phys.Anal.Geom., 2013, 16, P. 1–17.

10. Eshkabilov Yu.K., Haydarov F.H., Nodirov Sh.D. Positive fixed points of quadratic operators and Gibbs measures. Positivity, 2016, 20(4), P. 929–943.

11. Eshkabilov Yu.Kh., Haydarov F.H. Lyapunov operator L with degenerate kernel and Gibbs measures. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 553–558.

12. Rozikov U.A. Gibbs measures on a Cayley trees, World Sci. Pub, Singapore, 2013.

13. Rozikov U.A., Haydarov F.H. Four competing interactions for models with an uncountable set of spin values on a Cayley tree. Theor. Math. Phys., 2017, 191(2), P. 748–761.

14. Krasnosel’ski M.A. Positive Solutions of Opertor Equations. Gos. Izd. Moscow, 1969, Russian.

15. Nirenberg L. Topics in nonlinear functional analysis. AMS, Courant Lec. Notes in Math, 6, N.Y., 2001.

16. Haydarov F.H. Fixed points of Lyapunov integral operators and Gibbs measures. Positivity, 2018, 22(4), P. 1165–1172.

17. Georgii H.O. Gibbs Measures and Phase Transitions, 2nd edn. de Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter, Berlin, 2011.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2020;11(4):373–378. https://doi.org/10.17586/2220-8054-2020-11-4-373-378

For citation:


Ganikhodjaev R.N., Kucharov R.R., Aralova K.A. Positive fixed points of Lyapunov operator. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):373–378. https://doi.org/10.17586/2220-8054-2020-11-4-373-378

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)