Demagnetizing fields in chiral magnetic structures
https://doi.org/10.17586/2220-8054-2020-11-4-401-407
Аннотация
A method for calculating the magnetic dipole-dipole interaction in topological magnetic systems has been developed. It can be used to calculate stable states and minimum energy paths that determine the magnetic transition in chiral magnetic structures. Instead of directly summing the dipole interactions between magnetic moments/magnetic elements, we solve a local equation for demagnetizing fields. The states corresponding to the local energy minimum can be found using the Lagrange method for the conditional extrema. The efficiency of the algorithm has been demonstrated by calculating the dependence of the size and shape of magnetic skyrmions and anti-skyrmions on the magnitude of magnetization.
Об авторах
M. MoskalenkoРоссия
I. Lobanov
Россия
V. Uzdin
Россия
Список литературы
1. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2017, 2, P. 17031.
2. Finocchio G., Buttner F., Tomasello R., Carpentieri M., Kl¨ aui, M. Magnetic skyrmions: from fundamental to applications.¨ Journal of Physics D: Applied Physics, 2016, 49(42), P. 423001.
3. Nagaosa N., Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nature nanotechnology, 2013, 8(12), P. 899–911.
4. Bogdanov A.N. and Yablonskii D.A., Thermodynamically stable vortices in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz, 1989, 95(1), P. 178–182.
5. Bessarab P.F., Uzdin V.M., Jonsson H. Harmonic transition-state theory of thermal spin transitions.´ Physical Review B, 2012, 85(18), P. 184409.
6. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., Jonsson H. Energy surface and lifetime of magnetic skyrmions.´ Journal of Magnetism and Magnetic Materials, 2018, 459, P. 236–240.
7. Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nature Reviews Materials, 2016, 1(7), P. 1–11.
8. Lobanov I.S., Jonsson H., Uzdin V.M. Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy´ path calculations. Physical Review B, 2016, 94(17), P. 174418.
9. Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., Rossler U.K., Felser C., Parkin S.S.P. Magnetic antiskyrmions¨ above room temperature in tetragonal Heusler materials. Nature, 2017, 548(7669), P. 561–566.
10. Rybakov F.N., Borisov A.B., Blugel S., Kiselev N.S. New type of stable particlelike states in chiral magnets.¨ Physical review letters, 2015, 115(11), P. 117201.
11. Vlasov S.M., Uzdin V.M., Leonov A.O. Skyrmion flop transition and congregation of mutually orthogonal skyrmions in cubic helimagnets. Journal of Physics: Condensed Matter, 2020, 32(18), P. 185801.
12. Buttner F., Lemesh I., Beach G.S. Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications.¨ Scientific reports, 2020, 8(1), P. 1–12.
13. Caretta L., Mann M., Buttner F., Ueda K., Pfau B., G¨ unther C.M., Hessing P., Churikova A., Klose C., Schneider M., Engel D. Fast current-¨ driven domain walls and small skyrmions in a compensated ferrimagnet. Nature nanotechnology, 2018, 13(12), P. 1154–1160.
14. Legrand W., Maccariello D., Ajejas F., Collin S., Vecchiola A., Bouzehouane K., Reyren N., Cros V., Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nature materials, 2020, 19(1), P. 34–42.
15. Potkina M.N., Lobanov I.S., Jonsson H., Uzdin V.M. Skyrmions in antiferromagnets: Thermal stability and the effect of external field and´ impurities. Journal of Applied Physics, 2020, 127(21), P. 213906.
16. Lobanov I.S., Potkina M.N., Jonsson H., Uzdin V.M. Truncated minimum energy path method for finding first order saddle points.´ Nanosystems: physics, chemistry, mathematics, 2017, 8(5), P. 586–595.
17. Camosi L., Rougemaille N., Fruchart O., Vogel J., Rohart S. Micromagnetics of antiskyrmions in ultrathin films. Physical Review B, 2018, 97(13), P. 134404.
18. Donahue M. J., Porter D. G. OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD. 1999.
19. Ivanov A.V., Dagbartsson D., Tranchida J., Uzdin V. M., Jonsson H. Efficient optimization method for finding minimum energy paths of magnetic transitions Journal of Physics: Condensed Matter, 2020, 32(34), P. 345901.
20. Lobanov I. S., Uzdin V. M. The lifetime of big size topological chiral magnetic states. Estimation of the pre-exponential factor in the Arrhenius law, 2020. arXiv preprint, arXiv:2008.06754.
21. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., and Van Waeyenberge B. The design and verification of MuMax3. AIP Advances, 2014, 97, P. 107133.
22. Sachdev S. Handbook of magnetism and advanced magnetic materials, 2006.
Рецензия
Для цитирования:
, , . Наносистемы: физика, химия, математика. 2020;11(4):401–407. https://doi.org/10.17586/2220-8054-2020-11-4-401-407
For citation:
Moskalenko M.A., Lobanov I.S., Uzdin V.M. Demagnetizing fields in chiral magnetic structures. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):401–407. https://doi.org/10.17586/2220-8054-2020-11-4-401-407