Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux

https://doi.org/10.17586/2220-8054-2020-11-4-417-423

Abstract

The behavior of nanoparticle ensembles was studied using of NaRF4 hexagonal phases. The evolution of particles in the process of rapid and productive synthesis from flux as a result of a chemical reaction was investigated. A low-temperature synthesis process in the medium of sodium nitrate was used. Synthesis of the samples of up-conversion phosphor NaY0.78Yb0.2Er0.02F4 was performed from rare-earth nitrates at 350 – 430 C for 15 – 500 min. NaF was used as the fluorinating agent. Powder X-ray phase analysis and scanning electron microscopy revealed a rapid transformation of the cubic alpha modification into a hexagonal phase, followed by the transformation of nanoparticles into hexagonal prisms of micron sizes. The up-conversion luminescence energy yield increased as the reaction time increased.

About the Authors

P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



M. N. Mayakova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



A. A. Alexandrov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



D. V. Pominova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



E. V. Chernov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

119991, Moscow



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, Moscow



References

1. Ovsyankin V.V., Feofilov P.P. On the mechanism ofcombination of electron excitations in activatedcrystals. JETP Lett., 1966, 3, P. 322–323.

2. Auzel F.E. Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte et dans un verre. C. R. Acad. Sci. B, 1966, 262, P. 1016–1019.

3. Kramer K., et al. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors.¨ Chemistry of Materials, 2004, 16, P. 1244–1251.

4. Mai H.-X., et al. Size- and Phase-Controlled Synthesis of Monodisperse NaYF4:Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy. The Journal of Physical Chemistry C, 2007, 111, P. 13730–13739.

5. Li C., et al. Two-Dimensional -NaLuF4 Hexagonal Microplates. Crystal Growth & Design, 2008, 8, P. 923–928.

6. Zhang F., et al. Shape, Size, and Phase-Controlled Rare-Earth Fluoride Nanocrystals with Optical Up-conversion Properties. Chemistry European Journal, 2009, 15, P. 11010–11019.

7. Yang L.V., et al. White emission by Frequency Up-Conversion in Yb3+–Ho3+–Tm3+ Triply Doped Hexagonal NaYF4 Nanorods. The Journal of Physical Chemistry C, 2009, 113, P. 18995–18999.

8. Zhang F., et al. Photoluminescence Modification in Upconversion Rare-Earth fluoride Nanocrystal Array Conducted Photonic Crystals. Journal of Materials Chemistry, 2010, 20, P. 3895–3900.

9. Liu Q., et al. Sub-10nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. Journal American Chemical Society, 2011, 133, P. 17122–17125.

10. Nordmann J., et al. Synthesis of ß-Phase NaYF4:Yb,Er Upconversion Nanocrystals and Nanorods by Hot-Injection of Small Particles of the α-Phase. Zeitschrift fur Physikalische Chemie¨ , 2015, 229, P. 247–262.

11. Naccache R., Yu Q., Capobianco A. The Fluoride Host: Nucleartion, Growth, and Upconversion of Lanthanide-Doped Nanoparticles. Advanced Optical Materials, 2015, 3, P. 482–509.

12. Bard A.B., et al. Mechanistic Understanding of Non-Classical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires. Chemistry of Materials, 2020, 32 (7), P. 2753–2763.

13. Fedorov P.P., Luginina A.A., Kuznetsov S.V., Osiko V.V. Nanofluorides. Journal of Fluorine Chemistry, 2011, 132 (12), P. 1012–1039.

14. Gmelin Handbuch der anorganischen Chemie. Syst. Nummer 39: Seltenerdelemente. Teil C3: Sc, Y, La und Lanthanide. Fluoride, Oxifluoride und zugehogige Alkalidoppelverbindungen. Berlin, Springer Vlg., 1976.

15. Sobolev B.P. The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d‘Estudis Catalans, Barcelona, Spain, 2000.

16. Fedorov P.P., Luginina A.A., Popov, A.I. Transparent oxyfluoride glass ceramics. J. Fluor. Chem., 2015, 172, P. 22–50.

17. Fedorov P.P. Systems of Alcali and Rare-Earth Metal Fluorides. Russian Journal of Inorganic Chemistry, 1999, 44, P. 1703–1727.

18. Batsanova L.R. Rare-earth fluorides. Russ. Chem. Rev., 1971, 40 (6), P. 465–484.

19. Fedorov P.P., Kuznetsov S.V., et al. Coprecipitation from aqueous solutions to prepare binary fluorides. Russ. J. Inorg. Chem., 2011, 56, P. 1525–1531.

20. Fedorov P.P., et al. Soft Chemical Synthesis of NaYF4 Nanopowders. Russian Journal Inorganic Chemistry, 2008, 53, P. 1681–1685.

21. Yi G.S., Lu H.C., et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb, Er Infraredto-Visible Up-Conversion Phosphors. Nano Lett., 2004, 4, P. 2191–2196.

22. Cao C., Zhang X., et al. Ultraviolet and blue up-conversion fluorescence of NaY0.793xTm0.007Yb0.2GdxF4 phosphors. J. Alloys Compd., 2010, 505 (1), P. 6–10.

23. Wang F., Deng R., Liu X. Preparartion of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversionbased probes. Nature Protocol, 2014, 9, P. 1634–1644.

24. Sobolev B.P., Mineev D.A., Pashutin V.P. Low-temperature hexagonal polymorph NaYF4 with gagarinite-type structure. Dokl. AN SSSR, 1963, 150, P. 791–794 (in Russian).

25. Liang L.F., Wu H., et al. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1xYbxF4:Ln3+ (Ln3+ = Er3+ or Tm3+). J. Alloys Compd., 2004, 368, P. 94–100.

26. Wang Q., Tan M.C., et al. A Solvothermal Route to Size- and Phase-Controlled Highly Luminescent NaYF4:Yb, Er Up-Conversion Nanocrystals. J. Nanosci. Nanotechnol., 2010, 10 (3), P. 1685–1692.

27. Liu J-N., Bu W., et al. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials, 2012, 33 (29), P. 7282–7290.

28. Chen F., Bu W., et al. Gd3+IonDoped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization. Adv. Funct. Mater., 2013, 23 (3), P. 298–307.

29. Guo J., Ma F., et al. Solvothermal synthesis and upconversion spectroscopy of monophase hexagonal NaYF4:Yb3+/Er3+ nanosized crystallines. J. Alloys Compd., 2012, 523, P. 161–166.

30. Yu S., Wang Z., Gao R., Meng L. Microwave-assisted synthesis of water-disperse and biocompatible NaGdF4:Yb,Ln@NaGdF4 nanocrystals for UCL/CT/MR multimodal imaging. J. Fluorine Chem., 2017, 200, P. 77–83.

31. Lu J., Zhang Q., Saito F. Mechanochemical synthesis of Nano-sized complex fluorides from pair of different constituent fluoride compounds. Chem. Letters, 2002, 31 (12), P. 1176–1770.

32. Bartun˚ ek V., Pinc J., et al. Tunable rapid microwave synthesis of up-converting hexagonal NaYˇ xGdyYbzEr(1−x−y−z)F4 nanocrystals in large quantity. J. Fluor. Chem., 2015, 178, P. 56–60.

33. Fedorov P.P., Alexandrov A.A. Synthesis of Inorganic Fluorides from Molten Salt Fluxes and Ionic Liquid Mediums. J. Fluorine Chem., 2019, 227, 109374.

34. Suzuki S., Teshima K., et al. Low-Temperature Flux Growth and Upconversion Fluorescence of the Idiomorphic Hexagonal-System NaYF4 and NaYF4:Ln (Ln = Yb, Er, Tm) Crystals. Cryst. Growth Des., 2011, 11 (11), P. 4825–4830.

35. Suzuki S., Teshima K., et al. Novel fabrication of NIR-vis upconversion NaYF4:Ln (Ln = Yb, Er, Tm) crystal layers by a flux coating method. J. Mater. Chem., 2011, 21, P. 13847–13852.

36. Ding M., Chen D., et al. Molten salt synthesis of ß-NaYF4:Yb3+,Ln3+, (Ln = Er, Tm, and Ho) micro/nanocrystals with controllable morphology and multicolor upconversion luminescence. Sci Adv. Mater., 2017, 9, P. 688–695.

37. Zhang X., Yang P., et al. Facile and mass production synthesis of ß-NaYF4:Yb3+,Er3+/Tm3+ 1D microstructures with multicolor upconversion luminescence. Chem. Commun., 2011, 47 (44), P. 12143–12145.

38. Batsanova L.R., Kupriyanova A.K., Doroshenko V.I. Study of the interaction of the rare-earth nitrates with sodium fluorides in molten NaNO3. Inorg. Mater., 1971, 7, P. 1876–1877 (In Russian).

39. Suzuki S., Teshima K., et al. Novel fabrication of NIR-vis upconversion NaYF4:Ln (Ln = Yb, Er, Tm) crystal layers by a flux coating method. J. Mater. Chem., 2011, 21, P. 13847–13852.

40. Suzuki S., Teshima K., et al. Low-temperature flux growth and upconversion fluorescence of the idiomorphic hexagonal-system NaYF4 and NaYF4:Ln (Ln = Yb, Er, Tm) crystal. Cryst. Growth. Des., 2011, 11, P. 4825–4830.

41. Zhang X., Yang P., et al. Facile and mass production synthesis of ß-NaYF4:Yb3+, Er3+/ Tm3+ 1D microstructures with multicolor upconversion luminescence. Chem. Commun., 2011, 47, P. 12143–12145.

42. Ding M., Lu C., et al. Facile synthesis of ß-NaYF4:Ln3+(Ln = Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down- and up-conversion luminescence. J. Mater. Sci., 2013, 48, P. 4989–4998.

43. Huang X.Y., Hu G.H., et al. Molten-salt synthesis and upconversion of hexagonal NaYF4:Er3+:Yb3+ micro-/nano-crystals. J. Alloys Compd., 2014, 616, P. 652–661.

44. Fedorov P.P., et al. The melt of sodium nitrate as a new medium for synthesis of fluorides. Inorganics, 2018, 6, P. 38–55.

45. Fedorov P.P., et al. Preparation of “NaRF4” phases from the sodium nitrate melt. J. Fluorine Chem., 2019, 218, P. 69–75.

46. Ryabova A. V., et al. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods. Photon Lasers Med., 2013, 2, P. 117–128.

47. Ostwald W. Studien uber die Bildung und Umwandlung fester K¨ orper.¨ Zeitschrift fr Physikalische Chemie, 1897, 22, P. 289–330.

48. Threlfall T. Structural and thermodynamics explanation of Ostwalds rule. Organic Process Research and Development. 2003, 7, P. 1017–1027.

49. Fedorov P.P. Comment on the paper A.B. Bard, X. Zue, G. Zhu, et al. A Mechanistic Understanding of Non-Classical Crystal Growth in Hydrothermally Synthezied Sodium Yttrium Fluoride Nanowires. Chem. Mat., 2020, accepted for publication.

50. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented Aggregation of Particles: 100 Years of Investigations of Non-Classical Crystal Growth. Russian Chemical Review, 2014, 83, P. 1204–1222.

51. De Yoreo J.J., et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349 (6247), aaa6760.

52. Fedorov P.P., Osiko V.V. Relationship between the Faceting of Crystals and Their Formation Mechanism. Doklady Physics, 2019, 64 (9), P. 353–355.

53. Wang F., Wang J., Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed., 2010, 49, P. 7456–7460.

54. Demkiv T., et al. Intrinsic luminescence of SrF2 nanoparticles. Journal of Luminescence, 2017, 190, P. 10–15.

55. Vistovskyy V.V., et al. The luminescence of BaF2 nanoparticles upon high-energy excitation. Journal of Applied Physics, 2014, 116, 054308.


Review

For citations:


Fedorov P.P., Mayakova M.N., Alexandrov A.A., Voronov V.V., Pominova D.V., Chernov E.V., Ivanov V.K. Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):417–423. https://doi.org/10.17586/2220-8054-2020-11-4-417-423

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)