MoO3:In2O3 binary oxide thin films as CO gas sensor
https://doi.org/10.17586/2220-8054-2020-11-4-424-433
Abstract
Thin films of binary oxides (MoO3–In2O3) of different normality proportions of 0.1N:0.1N, 0.2N:0.1N, 0.3N:0.1N, 0.1N:0.2N, 0.2N:0.2N, 0.3N:0.2N, 0.1N:0.3N, 0.2N:0.3N and 0.3N:0.3N were prepared by a spray pyrolysis technique on glass substrates at 400◦C. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive analysis by x-ray spectra (EDAX). The electrical and gas sensing properties of the films were studied using static gas sensing apparatus. The electrical analysis confirmed that the resistivity of films increased by adding MoO3 as the dopant in In2O3. The maximum resistivity of film was found 1.75×104 Ωm for 0.3N (MoO3) and 0.1N (In2O3) binary oxide films. The films were tested against five different target gases. The composition ratio 0.3N:0.1N films showed the 70.50% sensitivity for 300 ppm CO gas at 150◦C. The response time (15 s) and recovery time (25 s) was found to be quick. The % selectivity was maximum for 0.3N:0.1N films.
About the Authors
Nimba KothawadeIndia
Kalwan (Manur), Nashik
Jitendra Borse
India
Risod
Vikas Deshmane
India
Ambernath, Thane, Maharashtra
Arun Patil
India
Panchavati, Nashik
References
1. Takada T., Suzuki K. and Nakane M. Highly sensitive ozone sensor, Sensors & Actuators B: Chemical, 1993, 13–14, P. 404–407.
2. Galdikas A., Marturas Z., Setkus A. SnInO-based chlorine gas sensor. Sensors and Actuators B: Chemicl, 1992, 7, P. 633–636.
3. Korotcenkov G., Cerneavschi A., Brinzari V., Cornet A., Morante J., Cabot A., Arbiol J. Ozone sensing properties of In2O3 films deposited by spray pyrolysis. Moldavian Journal of Physical Sciences, 2002, 1(3), P. 24–27.
4. Kiriakidsis G., Bender M., Katsarakis N., Gogaoudakis E., Hourdakis E., Douloufakis E., Cimalla V. Ozone sensing properties of polycrystalline indium oxide films at room temperature. Physica Status Solidi (a), 2001, 185(1), P. 27–32.
5. Seffes H., Imawan C., Solzbacher F., Obermeir E. Enhancement of NO2 sensing properties of In2O3-based thin films using Au or Ti surface modification. Sensors and Actuators B: Chemical, 2001, 78(1-3), P. 106–112.
6. Scharnagl K., Anothainart K., Fuchs A., Winter R., Zimmer M., Wlodarski W., Doll T., Eisele I. Room temperature ozone detection: comparison between indium oxide and potassium iodide. Proceedings of the 13-th European Conference on Solid State Transducers Eurosensors XIII, The Hague, The Netherlands pp. 255–258, 12–15 September 1999.
7. Faglia G., Allieri B., Comini E., Depera L.E., Sangaletti L., Sberveglieri G. Electrical and structural properties of RGTO-In2O3 sensors for ozone detection. Sensors Actuators B: Chemical, 1999, 57, P. 188–191.
8. Gurlo A., Ivanovskaya M., Barsan N., Weimar U., Gopel W. In2O3 and In2O3–MoO3 thin film semiconductor sensors: interaction with NO2 and O3. Sensors & Actuators B: Chemical, 1998, 47, P. 92–99.
9. Ivanovskaya M., Bogdanov P., Faglia G., Sberveglieri S. The features of thin films and ceramic sensors at the detection of CO and NO2. Sensors & Actuators B: Chemical, 2000, 68, P. 344–350.
10. Lee H.J., Song J.H., Yoon Y.S., Kim T.S., Kim K.J. and Choi W.K. Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sensors & Actuators B: Chemical, 2001, 79, P. 200–205.
11. Yamaura H., Moriya K., Miura N. and Yamazoe N. Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide. Sensors & Actuators B: Chemical, 2000, 65, P. 39–41.
12. Yamaura H., Jinkawa T., Tamaki J., Moriya K., Miura N., Yamazoe N. Indium oxide based gas sensor for selective detection of CO. Sensors & Actuators B: Chemical, 1997, 35–36, P. 325–332.
13. Ferroni M., Guidi V., Martinelli G., Nelli P., Sacerdoti M., Sberveglier G. Characterization of a molybdenum oxide sputtered thin film as gas sensor. Thin solid films, 1997, 307, P. 148–151.
14. Ferroni M., Guidi V., Martinelli G., Nelli P., Sacerdoti M., Sberveglier G. MoO3 based sputtered thin films for fast NO2 detection. Sensors &. Actuators B: Chemical, 1998, 48, P. 285–288.
15. Chung W.Y., Sakai G., Shimanoe K., Miura N., Lee D.D., Yamazoe N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sensors &. Actuators B: Chemical , 1998, 46, P. 139–145.
16. Liess M. Electric-field-induced migration of chemisorbed gas molecules on a sensitive filma new chemical sensor. Thin Solid Films, 2002, 410, P. 183–187.
17. Tamaki J., Naruo C., Yamamoto Y., Matsuoka M. Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sensors & Actuators. B: Chemical, 2002, 83, P. 190–194.
18. Kiriakids G., Bender M., Katsarakis N., Gagaoudakis E., Hourdakis E., Douloufakis E., Cimalla V. Ozone sensing properties of polycrystalline indium oxide films at room Temperature. Physica Status Solidi A, 2001, 185, P. 27–32.
19. Liu X., Jiang L., Jiang X., Tian X., Huang Y., Hou P., Zhang S., Xu X. Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Applied Surface Science, 2018, 447, P. 49–56.
20. Li H., Ahn S.H., Park S., Cai L., Zhao J., He J., Zhou M., Park J., Zheng X. Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing. Applied Physics Letters, 2016, 109(13), P. 133103.
21. Zhang D., Chang H., Sun Y., Jiang C., Yao Y., Zhang Y. Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature. Sensors and Actuators B: Chemical, 2017, 252, P. 624–632.
22. Ahire D.V., Shinde S.D., Patil G.E., Thakur K.K., Gaikwad V.B., Wagh V.G., Jain G.H. Preparation of MoO3 thin films by spray pyrolysis and its gas sensing performance. International Journal On Smart Sensing and Intelligent Systems, 2012, 5(3). P. 592–605.
23. Deshmane V.V., Patil A.V. Structural and Electrical Properties of Synthesized Undoped Iron Oxide Films. International Journal of Chemical & Physical Sciences, Special Issue 12 ICAFM (Part-II), 2018, 7, P. 425–430.
24. Deshmane V.V., Patil A.V. Study of In2O3 & α-Fe2O3 nano-composite as a petrol vapor sensor. Material research express, 2019, 6(2), P. 025904.
25. Deshmane V.V., Patil A.V. Synergy of semiconductor (Hematite) & catalytic (Ni) properties enhance gas sensing behavior to NO2. Material research express, 2019, 6, P. 072910.
26. Mohammadi S., Abdizade H., Golobostanfard M.R. Structural, Optical and Electrical Characterization of Mo Doped In2O3 Thin Films Prepared via Sol-Gel Spin Coating Technique. Advanced Materials Research, 2012, 576, P. 607–610.
27. Hou L., Zhang C., Li L., Du C., Li X., Kang X.F., Chen W. CO gas sensors based on p-type CuO nanotubes and CuO nano-cubes: Morphology and surface structure effects on the sensing performance. Talanta, 2018, 188, P. 41–49.
28. Arachchige M., Zappa H.M.M., Poli D.N., Gunawardhana N., Comini E. Gold functionalized MoO3 nano flakes for gas sensing applications. Sensors and Actuators B: Chemical, 2018, 269, P. 331–339.
29. Comini E., Yubao L., Brando Y., Sberveglieri G. Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chemical Physics Letters, 2005, 407(4-6), P. 368–371.
Review
For citations:
Kothawade N., Borse J., Deshmane V., Patil A. MoO3:In2O3 binary oxide thin films as CO gas sensor. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):424–433. https://doi.org/10.17586/2220-8054-2020-11-4-424-433