Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Solubility phase equilibrium in ternary system fullerenol C60(OH)24 and praseodymium salt: PrCl3–C60(OH)24–H2O at 25 ◦C

https://doi.org/10.17586/2220-8054-2020-11-4-462-467

Abstract

Solubility diagram was investigated by the method of saturation in ampules at 25 ± 0.02C for 4 hours. The solubility diagram of the PrCl3– C60(OH)24–H2O ternary system at 25 C occurs as simple eutonics, consisting of two branches, corresponding to the crystallization of crystalhydrates: PrCl3 · 7H2O and C60(OH)24 · 18H2O. The diagram contains one non-variant point each – eutonics, which corresponds to saturation with pair of crystal-hydrates simultaneously. The diagram also contains very short branch of PrCl3 · 7H2O crystallization, and long branch of C60(OH)24 · 18H2O, where the effect of fullerenol salt-out is distinctly observed.

About the Authors

G. A. Glushnev
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26, St. Petersburg, 190013



Ayat Kanbar
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26, St. Petersburg, 190013



V. A. Keskinov
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26, St. Petersburg, 190013



N. A. Charykov
St. Petersburg State Technological Institute (Technical University); St. Petersburg Electrotechnical University “LETI”
Russian Federation

Moskovsky prospect, 26, St. Petersburg, 190013

ul. Professora Popova 5, 197376 St. Petersburg



K. N. Semenov
St. Petersburg State Technological Institute (Technical University); St. Petersburg State University; Pavlov First St. Petersburg StateMedical University
Russian Federation

Moskovsky prospect, 26, St. Petersburg, 190013

7/9 Universitetskaya emb., St. Petersburg, 199034

L’va Tolstogo str. 6–8 St. Petersburg, 197022



Z. K. Shaimardanov
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk, 070004



B. K. Shaimardanova
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk, 070004



N. A. Kulenova
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk, 070004



D. G. Letenko
St.Petersburg State University of Architecture and Civil Engineering (SPSUACE)
Russian Federation

2nd Krasnoarmeiskaya St. 4, 190005 St. Petersburg



References

1. Shestopalova A.A., Semenov K.N., et al. Physico-chemical properties of the C60-arginine water solutions. J. of Molecular Liquids, 2015, 211, P. 301–307.

2. Semenov K.N., Charykov N.A., Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine –

3. C60(C6H13N4O2)8H8 aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (5), P. 715–725.

4. Yur’ev G.O., Lelet M.I., et al. Thermodynamic and thermal properties of the C60-L-Arg derivative. J. Chem. Thermodynamics, 2018, 127, P. 39–44.

5. Panova G.G., Serebryakov E.B., et al. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture. Journal of Nanomaterials, 2019, 2306518.

6. Serebryakov E.B., Zakusilo D.N., et al. Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions. Journal of Molecular Liquids, 2019, 279, P. 687–699.

7. Sidorov L.N., Yurovskaya M.A., et al. Fullerenes: textbook. allowance. M.: Exam, 2005, 668 p. (In Russian)

8. Cataldo F., Ros T.Da. Carbon Materials: Chemistry and Physics: Medicinal Chemistryand Pharmaco-logical Potential of Fullerenes and Carbon Nanotubes. Springer, 2008, 372 p.

9. Piotrovsky L.B., Kiselev O.I. Fullerenes in biology. Rostock, St. Petersburg, 2006, 336 p. (In Russian) [9] Djordjevic A., Bogdanovic G., Dobric S. Fullerenes in biomedicine. J. B.U.ON, 2006, 11, P. 391–404.

10. Bianco C., Da Ros A., Prato T., Toniolo M. Fullerene-based amino acids and peptides. J. Pept. Sci., 2001, 7, P. 346–347.

11. Jiang G., Yin F., Duan J., Li G. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med., 2015, 26 (1), 5348.

12. Grigoriev V.V., Petrova L.N., et al. Antioxidant properties of water soluble amino acid deriva-tives of fullerenes and their role in the inhibition of herpes virus infection. Russ. Chem. Bull. Int., 2011, 60, P. 1172–1176.

13. Liang Bing Gan, Chu Ping Luo. Water-soluble fullerene derivatives, synthesis and characteriza-tion of ß-alanine C60 adducts. Chinese Chemical letters, 1994, 4 (5), P. 275–278.

14. Safyannikov N.M., Charykov N.A., et al. Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids – lysine, threonine, oxyproline. Nanosustems: Physics, Chemistry, Mathematics, 2018, 9 (1), P. 46–49.

15. Serebryakov E.B., Semenov K.N., et al. Physico-chemical properties of the C70-L-lysine aqueous solutions. J. of Molecule Liquids, 2018, 256, P. 507–518.

16. Semenov K.N., Iurev G.O., et al. Physico-Chemical properties of the C60-L-lysine water solutions. Journal of Molecular Liquids, 2017, 225, P. 767–777.

17. Semenov K.N., Meshcheriakov A.A., et al. Physico-chemical and biological properties of C60-L-hydroxyproline water solutions. RSC Advances, 2017, 7, P. 15189–15200.

18. Lelet M.I., Semenov K.N., et al. Thermodynamic and thermal properties of the C60-L-lysine derivative. J. Chem. Thermodynamics, 2017, 115, P. 7–11.

19. Semenov K.N., Charykov N.A., et al. Physico-chemical properties of the C60-L-threonine water solutions. Journal of Molecular Liquids, 2017, 242, P. 940–950.

20. Keskinov V.A., Semenov K.N., et al. Phase Diagrams of Fullerenol-d–LaCl3–H2O and Fullerenol-d–GdCl3–H2O Systems at 25 ◦C. Russian Journal of Physical Chemistry A, 2019, 93 (12), P. 2555–2558.

21. Semenov K.N., Charykov N.A., et al. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russ. Chem. Rev., 2016, 85 (1), P. 38–59.

22. Pestov I.A., Keskinov V.A., et al. Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]–SmCl3–H20O Ternary System at 25 ◦C. Russian Journal of Physical Chemistry A, 2015, 89 (6), P. 998–1000.

23. Semenov K.N., Charykov N.A. Solubility Diagram of a Fullerenol-d–NaCl–H2O System at 25 ◦C. Rus. J. Phys. Chem., 2012, 86 (10), P. 1636–1639.

24. Semenov K.N., Keskinov V.A., et al. The fullerenol-d solubility in the fullerenol-d-inorganic salt-water ternary systems at 25 ◦C. Industrial and engineering chemical research, 2013, 52, P. 16095–16100.

25. Gschneidner K., Eyring L. Handbook on physics and chemistry of rare earths. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978.

26. Korovin S.S., Zimina G.V., et al. Rare and scattered elements. Chemistry and technology. In 3 books. Book 1: Textbook for universities. Ed. Korovin S.S., M.: MISIS, 1996, 376 p. (In Russian)

27. Charykov N.A., Charykova M.V., et al. Multiphase Open Phase Processes Differential Equations. Processes, 2019, 3 (7), P. 148–167.

28. Charykova M.V., Charykov N.A. Thermodynamic modeling of evaporite sedimentation processes. St. Petersburg: Nauka, 2003, 262 p.

29. Semenov K.N., Charykov N.A., et al. Fullerenols: Physicochemical properties and applications. Progress in Solid State Chemistry, 2016, 44 (2), P. 59–74.


Review

For citations:


Glushnev G.A., Kanbar A., Keskinov V.A., Charykov N.A., Semenov K.N., Shaimardanov Z.K., Shaimardanova B.K., Kulenova N.A., Letenko D.G. Solubility phase equilibrium in ternary system fullerenol C60(OH)24 and praseodymium salt: PrCl3–C60(OH)24–H2O at 25 ◦C. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):462–467. https://doi.org/10.17586/2220-8054-2020-11-4-462-467

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)