Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Visible light photoluminescence in TiO2/CdS nanopowders synthesized by sol-gel route: effect of gel aging time

https://doi.org/10.17586/2220-8054-2020-11-4-480-487

Abstract

A series of sol-gel TiO2/CdS, TiO2 powders and coagulated CdS nanoparticles were studied by XRD, HRTEM and Raman spectroscopy to elucidate the effect of low-temperature gel aging time on visible photoluminescence (PL) emission of the TiO2/CdS composites. With an increase in aging time a content of amorphous titania and incorporated CdS nanoparticles decreases in composites. For all composites, visible PL emission includes bands attributed to surface oxygen vacancies and hydroxyl group of TiO2 nanocrystals, as well as yellow-green and red bands related to lattice defect states of CdS nanoparticles. It was found that gel aging time is a crucial parameter to influence visible PL emission in composites. This emission is suppressed with increasing aging time, and its evolution shows that healing of oxygen vacancy defects and hydroxyl group affect visible emission more significantly than improving crystallinity degree. The correlation between visible PL emission in TiO2/CdS and their visible-light photocatalytic activity was discussed.

About the Authors

E. S. Ulyanova
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990Pervomayskaya, 91, Ekaterinburg, 620990



D. A. Zamyatin
Institute of Geology and Geochemistry of Ural Branch of the Russian Academy of Sciences; Ural Federal University named B.N. Yeltsin
Russian Federation

Vonsovskogo, 15, Ekaterinburg, 620075

Mira, 9, Ekaterinburg, 620002



V. Yu. Kolosov
Ural Federal University named B.N. Yeltsin
Russian Federation

Mira, 9, Ekaterinburg, 620002



E. V. Shalaeva
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



References

1. Vogel R., Honyer P., Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous widebandgap semiconductors. J. Phys. Chem., 1994, 98, P. 3183–3188.

2. Zhao D., Yang C.-F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dotsensitized solar cells. Renewable and sustainable energy reviews, 2016, 54, P. 1048–1059.

3. Wang Y., Wang Q., Zhan X., Wang F., Safdar M., He J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5(18), P. 8326–8339.

4. He D., Chen M., Teng F., Li G., Shi H., Wang J., Xu M., Lu T., Ji X., Lv Y., Zhu Y. Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure. Superlattices and Microstructures, 2012, 51, P. 799–808.

5. Zhang B., Zheng J., Li X., Fang Y., Wang L-W., Lin Y. Pan F. Tuning band alignment by CdS layers using a SILAR method to enhance TiO2/CdS/CdSe quantum-dot solar-cell performance. Chem. Comm., 2016, 52, P. 5706–5709.

6. Xie Z., Liu Z., Wang W., Liu C., Li Z. Zhang Z. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles. Sci. Technol. Adv. Mater., 2014, 15(5), P. 055006.

7. Huo Y., Yang X., Zhu J., Li H. Highly active and stable CdS-TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions. Appl. Catalysis B: Environmental, 2011, 106, P. 69–75.

8. Zhao H., Cui S., Yang L., Li G., Li N., Li X. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2018, 512, P. 47–54.

9. Devi L.G., Kavitha R. Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification. Materials Chemistry and Physics, 2013, 143(3), P. 1300–1308.

10. Zhang J., Chen X., Shen Y., Li Y., Hu Z., Chu J. Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys. Chem. Chem. Phys., 2011, 13, P. 13096–13105.

11. Abazovic N.D., Comor M.I., Dramicanim M.D., Jovanovic D.J., Ahrenkiel S.P., Nadeljkovic J.M. Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B, 2006, 110, P. 25366–25370.

12. Mathew S., Prasad A.K., Benoy T., Rakesh P.P., Hari M., Libish T.M. UV-Visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J. Pluoresc, 2012, 22, P. 1593–1599.

13. Zhang H., Zhou M., Fu Q., Lei B., Lin W., Guo H., Wu M., Lei Y. Observation of defect state in highly ordered titanium dioxide nanotube arrays. Nanotechnology, 2014, 25(27), P. 275603.

14. Chetibi L., Busko T., Kulish N.P., Hamana D., Chaieb S., Achour S. Photoluminescence properties of TiO2 nanofibers. J. Nanopart. Res., 2017, 19, P. 129.

15. Tsai C.T., Chuu D.S., Chen G.L., Yang S.L. Studies of grain size effects in rf sputtered CdS thin films. J. Appl. Phys., 1996, 79(12), P. 9105– 9109.

16. Yang Y., Chen H., Mei Y., Chen J., Wu X., Bao X. CdS nanocrystallities prepared by chemical and physicaltemplates. Acta Materialia, 2002, 50, P. 5085–5090.

17. Kumar P., Saxena N., Singh F., Agarwal A. Nanotwinning in CdS quantum dots. Physica C, 2012, 407, P. 3347–3351.

18. Abken A.E., Halliday D.P., Durose K. Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition. J. Appl. Phys., 2009, 105, P. 064515.

19. Jin C., Liu B., Lei Z., Sun J. Structure and photoluminescence of the TiO2 films grown by atomic deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Research Letters, 2015, 10(1), P. 95.

20. Han S., Pu Y-C., Zheng L., Zhang J., Fang X. Shell-thickness dependent electron transfer and relaxation in type-II core-shell CdS/TiO2 structures with optimized photoelectrochemical performance. J. Materials Chem. A, 2015, 3, P. 22627–22635.

21. Li X., Xia T., Xu C., Murowchick J., Chen X. Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catalysis Today, 2014, 225, P. 64–73.

22. Thakur P., Chadha R., Biswas N., Sarkar S.K., Mukherjee T., Joshi S.S., Kapoor S. Synthesis and characterization of CdS doped TiO2 nanocrystalline powder: A spectroscopic study. Materials Research Bulletin, 2012, 47, P. 1719–1724.

23. Guo X., Chen C., Song W., Wang X., Di W., Qin W. CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Molecular Catalysis A: Chemical, 2014, 387, P. 1-6.

24. Vorokh A.S., Kozhevnikova N.S., Gorbynova T.I., Gyrdasova O.I., Baklanova I.V., Yanchenko M.Yu., Myrzakaev A.M., Shalaeva E.V., Enyashin A.N. Facile, rapid and efficient doping of amorphous TiO2 by pre-synthesized colloidal CdS quantum dots. J. Alloys and Comp., 2017, 706, P. 205–214.

25. Ulyanova E.S., Zamyatin D.A., Murzakaev A.M., Yushkov A.A., Kozhevnikova N.S., Gorbunova T.I., Vorokh A.S., Enyashin A.N., Shalaeva E.V. Local environment of CdS nanoparticles incorporated into anatase/brookite matrix via sol-gel route: HRTEM, Raman spectroscopy and MD simulation. Materials Today Communications, 2020, 25, P. 101465.

26. Kozhevnikova N.S., Ulyanova E.S., Shalaeva E.V., Zamyatin D.A., Bokunyaeva A.O., Yushkov A.A., Kolosov V.Yu., Buldakova L.Yu., Yanchenko M.Yu., Gorbunova T.I., Pervova M.G., Enyashin A.N., Vorokh A.S. Low-temperature sol-gel synthesis and photoactivity of nanocrystalline TiO2 with the anatase/brookite structure and an amorphous component. Kinetics and Catalysis, 2019, 60, P. 325–336.

27. http://powdercell-forwindows.software.informer.com/2.4

28. Vorokh A.S., Rempel A.A. Direct-space visualization of the short and “average” long-range orders in the nanocrystalline structure of a single cadmium sulfide nanoparticle. JETF Letters, 2010, 91(2), P. 100–104.

29. Kuznetsova Yu.V., Letofsky-Papst I., Sochor B., Schummer B., Sergeev A.A., Hofer F., Rempel A.A. Greatly enhanced luminescence efficiency of CdS nanoparticles in aqueous solution. Colloids and Surfaces A, 2019, 581, P. 123814.

30. Iliev M.N., Hadjiev V.G., Litvinchuk A.P. Raman and infrared spectra of brookite (TiO2): Experiment and theory. Vibrational spectroscopy, 2013, 64, P. 148–152.

31. Prabhy R., Khadar M.A. Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Scie., 2008, 31, P. 511– 515.

32. Vequizo J.M., Kamimura S., Ohno T., Yamakata A. Oxygen induced enhancement of NIR emission in brookite TiO2 powders: comparison with rutile and anatase powders. Phys. Chem. Chem. Phys., 2018, 20, P. 3241–3248.


Review

For citations:


Ulyanova E.S., Zamyatin D.A., Kolosov V.Yu., Shalaeva E.V. Visible light photoluminescence in TiO2/CdS nanopowders synthesized by sol-gel route: effect of gel aging time. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):480–487. https://doi.org/10.17586/2220-8054-2020-11-4-480-487

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)