Fabrication and characterization of spectrally selective glazing dielectric multilayer structures
https://doi.org/10.17586/2220-8054-2020-11-4-488-492
Abstract
We report the fabrication of three- and five-layered based TiO2/SiO2 dielectric structures as the back-end reflector application in thin film silicon solar cells. These dielectric structures are prepared by the combined sol-gel and spin-coating techniques. X-ray diffraction (XRD) analysis of both the three- and five-layered based structures confirmed the anatase phase of TiO2 with its dominant peak at 2θ = 25◦. Field-emission scanning electron microscopy (FESEM) study demonstrated the formation of three and five alternate layers of TiO2 and SiO2 films. Comparatively, five-layered based reflector yielded the maximum (100 %) reflectance in the near-infrared (NIR) wavelength region as evidenced by the UV-Vis spectroscopy investigation.
About the Authors
Venkatesh YepuriIndia
Seetharampuram, Narsapur (A.P.)
Gurgaon, (Haryana)
R. S. Dubey
India
Seetharampuram, Narsapur (A.P.)
Brijesh Kumar
India
Gurgaon, (Haryana)
References
1. Isabella O., Dobrovolskiy S., Kroon G., Zeman M. Design and application of dielectric distributed Bragg back reflector in thin-film silicon solar cells. J. Non-Cryst. Solids, 2012, 358(17), P. 2295–2298.
2. Fu A., Gao H., Petrov P., Yang P. Widely tunable distributed Bragg reflectors integrated into nanowire waveguides. Nano Lett., 2015, 15(10), P. 6909-13.
3. Lee S.M., Gong S.H., Kang J.H., Ebaid M., Ryu S.W., Cho Y.H. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Opt. Express, 2015, 23(9), P. 1687–1689.
4. Dubey R.S., Ganesan V. Fabrication and characterization of TiO2/SiO2 based Bragg reflectors for light trapping applications. Results Phys., 2017, 7, P. 2271–2276.
5. Jeong S.H., Jae K.K., Bong S.K., Seok H.S., Byung T.L. Optical application and characterization of SiO2 and TiO2 films prepared using a reactive RF Magnetron sputtering. Vacuum, 2004, 76(4), P. 507–515.
6. Rabaste S. Sol gel fabrication of thick multilayers applied to Bragg reflectors and microcavities. Thin Solid Films, 2002, 416(1-2), P. 242–247.
7. Zhang Q., Wang J., Wu G., Shen J., Buddhudu S. Interference coating by hydrophobic aerogel-like SiO2 thin films. Mater. Chem. Phys, 2001, 72(1), P. 56–59.
8. Mennig M., Oliveira P.W., Schmidt H. Interference coatings on glass based on photopolymerizable nanomer material. Thin Solid Films, 1999, 351(1-2), P. 99–102.
9. San Vicente G., Morales A., Gutierrez M.T. Preparation and Characterization of Sol–Gel TiO2 Antireflective Coatings for Silicon. Thin Solid Film, 2001, 391(1), P. 133–137.
10. Hammarberg E., Roos A. Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films, 2003, 442(1-2), P. 222–226.
11. Bautista M.C., Morales A. Silica antireflective films on glass produced by the sol–gel method. Sol. Energy Mater. Sol. Cells, 2003, 80(2), P. 217–225.
12. Vong M.S.W., Sermon P.A. Observing the breathing of silica sol-gel-derived anti-reflection optical coatings. Thin Solid Films, 1997, 293(1-2), P. 185–195.
13. Nostell P., Roos A., Karlsson B. Optical and mechanical properties of sol-gel antireflective films for solar energy applications. Thin Solid Films, 1999, 351(1-2), P. 170–175.
14. San Vicente G., Morales A., Gutierrez M.T. Sol–gel TiO2 antireflective films for textured monocrystalline silicon solar cells. Thin Solid Films, 2002, 403–404, P. 335–338.
15. Calvo M.E. Photoconducting Bragg Mirrors based on TiO2 Nanoparticle. Adv. Funct. Mat., 2008, 18(18), P. 2708–2715.
16. Saygin Hinczewski D., Hinczewski M., Tepehan F.Z., Tepehan G.G. Optical filters from SiO2 and TiO2 multi-layers using sol–gel spin coating method. Sol. Energ. Mat. Sol. C, 2005, 87(1-4), P. 181–196.
17. Nagayoshi H., Takuya Murooka. TiO2 nanoparticle/SiO2 composite back reflector for solar cells. Energy Procedia, 2015, 77, P. 242–247.
18. Nandanwar R., Singh P., Syed F.F., Haque Z.F. Preparation of TiO2/SiO2 Nanocomposite with Non-ionic Surfactants via Sol-gel Process and their Photocatalytic Study. Orient. J. Chem., 2014, 30(4), P. 1577–1584.
Review
For citations:
Yepuri V., Dubey R.S., Kumar B. Fabrication and characterization of spectrally selective glazing dielectric multilayer structures. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):488–492. https://doi.org/10.17586/2220-8054-2020-11-4-488-492