Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Ultraviolet and visible reflective TiO2/SiO2 thin films on silicon using sol-gel spin coater

https://doi.org/10.17586/2220-8054-2021-12-3-311-316

Abstract

TiO2/SiO2 alternative thin films (stacks) were deposited on silicon substrates using sol-gel spin-coating techniques. The prepared samples had their corresponding optical properties analyzed by UV-Visible spectrophotometry (UV-Vis), X-ray diffractometry (XRD), a surface profilometer, and Raman spectroscopy. The optical and crystallization properties of thin films were varied and compared by changing the number of stacks. UV-Vis spectrum showed high reflectance and shifting towards the infrared region with effect of increased TiO2/SiO2 stacks. XRD spectra confirmed the existence of anatase TiO2 and SiO2 diffraction peaks. The multilayer film thickness was calculated at 109 and 151 nm at two and four stacks by a surface profilometer. The Raman spectra confirmed the Si–O–Si and TiO2 stretching modes at 2600, 980, and 519 cm-1. This investigation reveals the promising and effective UV-Visible reflective property of alternative TiO2/SiO2 thin films on a silicon substrate.

About the Authors

S. Saravanan
Advanced Research Laboratory for  Nanomaterials & Devices, Department of Nanotechnology, Swarnandhra College of Engineering & Technology
India

S. Saravanan

Narsapur-534 280, West Godavari (A.P.)



R. S. Dubey
Advanced Research Laboratory for  Nanomaterials & Devices, Department of Nanotechnology, Swarnandhra College of Engineering & Technology
India

R. S. Dubey

Narsapur-534 280, West Godavari (A.P.)



References

1. Park N.G., van de Lagemaat J., Frank A.J. Comparison of dye-sensitized rutile- and anatase based TiO2 solar cells. J. Phys. Chem. D, 2000, 104, P. 8989–8994.

2. Eframoktora R.G. Nelwan, Suliyandi M.M., Prastomo N. Fabrication of anti-reflection coating TiO2-SiO2 on silicon substrate with pulsed laser deposition method. Proc. SPIE, 2019, Third International Seminar on Photonics, Optics and Its Applications (ISPhoA 2018), 11044N.

3. Kirillova S.A., Almjashev V.I., Gusarov V.V. Spinodal decomposition in the SiO2-TiO2 system and hierarchically organized nanostructures formation. Nanosystems: Physics, Chemistry, Mathematics, 2012, 3 (2), P. 100–115.

4. Ortiz A.A., Yan B., D’Orazio J.A. Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules, 2014, 19 (5), P. 6202–6219.

5. Chemin J.B., Bulou S., et al. Transparent anti-fogging and self-cleaning TiO2/SiO2 thin films on polymer substrates using atmospheric plasma. Scientific Reports, 2018, 8, P. 1–8.

6. Mao Q., Zeng D., Xu K., Xie C. Fabrication of porous TiO2-SiO2 multifunctional anti-reflection coatings by sol-gel coating method. RSC Advances, 2014, 101, P. 58101–58107.

7. Dembele A., Rahman M., et al. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet. system. J. Nanosci. Nanotechnol., 2011, 11, P. 8730–8737.

8. Liu F., Shen J., et al. In situ growth of TiO2/SiO2 nanospheres on glass substrates via solution impregnation for antifogging. RSC Advances, 2017, 7, P. 15992–15996.

9. Li X., He J. Synthesis of raspberry-Like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl. Mater. Interface, 2013, 5, P. 5282–5290.

10. Saxena N., Naik T., Paria S. Organization of SiO2 and TiO2 nanoparticles into fractal patterns on glass surface for the generation of superhydrophilicity. J. Phys. Chem. C, 2017, 121, P. 2428–2436.

11. Venkatesh Y., Dubey R.S., Kumar B. Rapid and economic fabrication of dielectric approach of dielectric reflectors for energy harvesting applications. Scientific Reports, 2020, 10, P. 1–9.

12. Dubey R.S., Ganesan V. Visible and near-infrared wavelength-selective dielectric reflectors for light management applications. Superlattices Microstruct., 2018, 122, P. 228–234.

13. Sedrati H., Benachour M.C., Dehdouh H., Bensaha R. Tuning of the stop-band position in the visible range of SiO2/TiO2 Bragg reflectors by doping TiO2 with transition metals. Optik, 2019, 208, 164098-1-6.

14. Zhao W., Jia H., et al. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO2 and SiO2- TiO2 hybrid materials. Appl. Opt., 2019, 58 (9), P. 2385–2392.

15. Dubey R.S., Ganesan V. Reflectance modulation using SiO2/TiO-multilayer structures prepared by sol-gel spin coating process for optical applications. Superlattices Microstruct., 2017, 111, P. 1099–1103.

16. Zhang X., Fujishima A., Jin M., Emeline A.V., Murakami T. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties. J. Phys. Chem. B, 2006, 110, P. 25142–25148.

17. Dalapati G.K., Panah S.M., et al. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application. Scientific Reports, 2015, 6, P. 1–14.

18. Saravanan S., Dubey R.S. Fabrication and characterization of TiO2/SiO2 multilayers using sol-gel spin coating method. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (1), P. 63–69.

19. Wu Z.G., Jia Y.R., et al. Core-shell SiO2/Ag composite spheres: synthesis, characterization and photocatalytic properties. Materials Science – Poland, 2016, 34 (4), P. 806–810.

20. Venkatesh Y., Dubey R.S., Kumar B. Morphological and optical properties of dielectric multilayer structures prepared with distinct precursor concentrations. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (3), P. 355–360.

21. Dubey R.S., Krishnamurthy K.V., Singh S. Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Results in Physics, 2019, 14, 102390-1-6.

22. Sedrati H., Bensaha R., et al. Correlation between structural and optical properties of SiO2/TiO2 multilayers processed by sol-gel technique and applied to Bragg reflectors. Materials Science, 2013, 9 (3), P. 113–118.

23. Xue C., Zhang Q., et al. High photocatalytic activity of Fe3O4-SiO2-TiO2 functional particles with core-shell structure. Journal of Nanomaterials, 2013, 762423.

24. Wardiyati S., Adi W.A., Deswita. Synthesis and characterization of microwave absorber SiO2 by sol-gel method. IOP Conf. Ser.: Mater. Sci. and Eng., 2017, 202, P. 1–8.

25. Monshi A., Foroughi M.R., Monsh M.R. Modified Scherrer equation of reaction of reaction to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2, P. 154–160.

26. Zhu X., Gu P., et al. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering. AIP Advances, 2017, 7, 125326-1-8.

27. Barimah E.K., Jones R.P., et al. Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Scientific Reports, 2020, 10, P. 1–12.

28. Lari N., Ahangarani S., Shanaghi A. Effect of different TiO2-SiO2 multilayer coatings applied by sol-gel method on antireflective property. J. Mater. Eng., 2015, 24 (7), P. 2645–2652.

29. Nezar S., Saoula N., et al. Properties of TiO2 thin films deposited by RF reactive magnetron sputtering on biased substrates. Appl. Surf., 2017, 395, P. 172–179.

30. Klein M.V. Light Scattering in Solids I, Topics in Applied Physics, Springer Berlin, Heidelberg, Germany 1983.

31. Rosales A., Maury-Ramirez A., Det al. SiO2-TiO2 coating: synthesis, physical characterization and photocatalytic evaluation. Coatings, 2018, 8 (4), P. 1–13.

32. Popovic D.M., Milosavljevic V., et al. Raman scattering analysis of silicon dioxide single crystal treated by direct current plasma discharge. Appl. Phys. Lett., 2011, 98, 051503-1-3.


Review

For citations:


Saravanan S., Dubey R.S. Ultraviolet and visible reflective TiO2/SiO2 thin films on silicon using sol-gel spin coater. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):311-316. https://doi.org/10.17586/2220-8054-2021-12-3-311-316

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)