Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Комплексный анализ цитотоксичности полисахаридного гидрогеля, модифицированного наночастицами оксида церия, для применения в заживлении ран

https://doi.org/10.17586/2220-8054-2021-12-3-329-335

Аннотация

Целью данной работы является экспериментальное изучение (на животных моделях) острой токсичности и раздражающих свойств полисахаридного гидрогеля, модифицированного наночастицами оксида церия. В остром эксперименте не было признаков раздражающего действия геля в месте аппликации при внутрижелудочном или накожном введении гидрогеля. Летальных эффектов в этом эксперименте не зарегистрировано даже при самой высокой концентрации. Полученные результаты демонстрируют отсутствие у синтезированного гибридного гидрогеля острой токсичности и местного раздражающего действия, что позволяет отнести разработанный гибридный гидрогель к препаратам относительно низкого риска.

Об авторах

A. L. Popov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


V. V. Andreeva
Moscow Regional Research and Clinical Institute, Laboratory of Medical and Physics Research
Россия


N. V. Khohlov
I. M. Sechenov First Moscow State Medical University
Россия


K. A. Kamenskikh
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Россия


V. B. Gavrilyuk
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Россия


V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Список литературы

1. Bellio P., Luzi C., Mancini A., Cracchiolo S., Passacantando M., Di Pietro L., Perilli M., Amicosante G., Santucci S., Celenza G. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochim. Biophys. Acta Biomembr., 2018, 1860, P. 2428–2435.

2. Popov A., Popova, N., Gould D., Shcherbakov A., Sukhorukov G., Ivanov V. Ceria nanoparticles-decorated microcapsules as a smart drug delivery/protective system: Protection of encapsulated P. pyralis luciferase. ACS Appl. Mater. Interfaces, 2018, 10(17), P. 14367–14377.

3. Rocca A., Mattoli V., Mazzolai B., Ciofani G. Cerium Oxide Nanoparticles Inhibit Adipogenesis in Rat Mesenchymal Stem Cells: Potential Therapeutic Implications. Pharm. Res., 2014, 31, P. 2952–2962.

4. Sridharan P., Vinothkumar G., Pratheesh P., Suresh Babu K. Biomimetic potential of cerium oxide nanoparticles in modulating the metabolic gene signature in GBM-derived cell lines. J Mater Sci., 2020, 55, P. 11622–11636.

5. Zhou D., Fang T., Lu L.-Q., Yi L. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J. Huazhong Univ. Sci. Technol., 2016, 36, P. 480–486.

6. Hirst S.M., Karakoti A.S., Tyler R.D., Sriranganathan N., Seal S., Reilly C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5(24), P. 2848–2856.

7. Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3(4), P. 1411–1420.

8. Malyukin Y., Maksimchuk P., Seminko V., Okrushko E., Spivak N. Limitations of Self-Regenerative Antioxidant Ability of Nanoceria Imposed by Oxygen Diffusion. J. Phys. Chem. C, 2018, 122(28), P. 16406–16411.

9. Seminko V., Maksimchuk P., Grygorova G., Malyukin Y.V. Mechanism and Dynamics of Fast Redox Cycling in Cerium Oxide Nanoparticles at High Oxidant Concentration. J. Phys. Chem. C, 2021, 125(8), P. 4743–4749.

10. Seminko V., Maksimchuk P., Grygorova G., Avrunin O., Semenets V., Klochkov V., Malyukin Y. Catalytic Decomposition of Hypochlorite Anions by Ceria Nanoparticles Visualized by Spectroscopic Techniques. J. Phys. Chem. C, 2019, 123(33), P. 20675–20681.

11. Klochkov V.K., Sedyh O.O., Grygorova G.V., Viagin O.G., Opolonin A.D., Malyukin Yu.V. Induction and inhibition of free radicals by the GdVO4:Eu3+ and CeO2 nanoparticles under X-ray irradiation. Funct. Mater., 2018, 25(2), P. 294–299.

12. Klochkov V.K., Malyukin Yu.V., Grygorova G.V., Sedyh O.O., Kavok N.S., Seminko V.V., Semynozhenko V.P. Oxidation-reduction processes in CeO2-x nanocrystals under UV irradiation. J. Photochem. Photobiol. A, 2018, 364, P. 282–287.

13. Malyukin Y., Klochkov V., Maksimchuk P., Seminko V., Spivak N. Oscillations of cerium oxidation state driven by oxygen diffusion in colloidal nanoceria (CeO2-x). Nanoscale Res. Lett., 2017, 12(1), P. 566.

14. Alpaslan E., Yazici H., Golshan N.H., Ziemer K.S., Webster T.J. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomater. Sci. Eng., 2015, 1(11), P. 1096–1103.

15. Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 2009, 78(9), P. 855–871.

16. Lord M.S., Jung M., Teoh W.Y., Gunawan C., Vassie J.A., Amal R., Whitelock J.M. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials, 2012, 33(31), P. 7915–7924.

17. Ciofani G., Genchi G.G., Liakos I., Cappello V., Gemmi M., Athanassiou A., Mazzolai B., Mattoli V. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: Proliferation, differentiation, and dopamine secretion. Pharm Res., 2013, 30, P. 2133–2145.

18. Niu J., Azfer A., Rogers L.M.,Wang X., Kolattukudy P.E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res., 2007, 73, P. 549–559.

19. Chen S., Hou Y., Cheng G., Zhang C., Wang S., Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol. Trace Elem. Res., 2013, 154, P. 156–166.

20. Lu B., Zhu D.-Y., Yin J.-H., Xu H., Zhang C.-Q., Ke Q.-F., Gao Y.-S., Guo Y.-P. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication, 2019, 11(2), P. 025012.

21. Alpaslan E., Geilich B.M., Yazici H., Webster T.J. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram- Negative Bacteria Growth. Sci. Rep., 2017, 7, P. 45859.

22. Agarwal C., Aggrawal S., Dutt D., Mohanty P. Cerium oxide immobilized paper matrices for bactericidal application. Mater. Sci. Eng. B, 2018, 232–235, P. 1–7.

23. Mohamed H.E.A., Afridi S., Khalil A.T., Ali M., Zohra T., Akhtar R., Ikram A., Shinwari Z.K., Maaza M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine, 2020, 15(5), P. 467–488.

24. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater. Sci. Eng. C, 2016, 68, P. 406–413.

25. Thoniyot P., Tan M.J., Karim A.A., Young D.J., Loh X.J. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi Functional Materials. Adv. Sci., 2015, 2, P. 1400010.

26. Dannert C., Stokke B.T., Dias R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, 2019, 11(2), P. 275.

27. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosyst. Phys. Chem. Math., 2017, 8(3), P. 391–396.

28. Gosselin R.E., Hodge H., Smith R.P., Gleason M.N. Clinical Toxicology of Commercial Products: Acute Poisoning. Williams and Wilkins, Baltimore, 1976, 332 p.

29. Popova N.R., Andreeva V.V., Khohlov N.V., Popov A.L., Ivanov V.K. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosyst. Phys. Chem. Math., 2020, 11(1), P. 99–109.


Рецензия

Для цитирования:


Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Комплексный анализ цитотоксичности полисахаридного гидрогеля, модифицированного наночастицами оксида церия, для применения в заживлении ран. Наносистемы: физика, химия, математика. 2021;12(3):329-335. https://doi.org/10.17586/2220-8054-2021-12-3-329-335

For citation:


Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Comprehensive cytotoxicity analysis of polysaccharide hydrogel modified with cerium oxide nanoparticles for wound healing application. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):329-335. https://doi.org/10.17586/2220-8054-2021-12-3-329-335

Просмотров: 99


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)