On the metric graph model for flows in tubular nanostructures
https://doi.org/10.17586/2220-8054-2019-10-1-6-11
Abstract
A metric graph model is suggested for the Stokes flow concentrated in the vicinity of a network embedded in R3. As a basic problem, we consider the case corresponding to strong variation of the viscosity and density in a cylinder of small radius. An equation for the main term of the asymptotics is obtained. As for a graph structure, coupling conditions are assumed at the graph vertices.
About the Authors
M. O. SmolkinaRussian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
I. Y. Popov
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
I. V. Blinova
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
E. Milakis
Cyprus
P.O.Box 20537, CY-1678 Nicosia
References
1. Chivilikhin S.A., Gusarov V.V., Popov I.Y. Charge pumping in nanotube filled with electrolyte. Chinese Journal of Physics, 2018, 56(5), P. 2531–2537.
2. Popov I.Yu., Kyzyurova K.N. and Blinova I.V., Stokes flow driven by a Stokeslet in a cone. Acta Mechanica, 2014, 225, P. 3115–3121.
3. Belonenko M.B., Chivilikhin S.A., Gusarov V.V., Popov I.Yu. and Rodygina O.A. Soliton-induced flow in carbon nanotube. Europhys. Lett., 2013, 101(6), P. 66001.
4. Sharan M. and Popel A.S. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology, 2001, 38, P. 415–428.
5. Secomb T.W. and El-Kareh A.V. Models for slow blood flow in narrow tubes: effect of aggregation and sedimentation on flow resistance. Biorheology, 1995, 32, P. 169–169.
6. Srivastava V.P. A theoretical model for blood flow in small vessels. Int. J. Applications and Appl. Math., 2007, 2(1), P. 51–65.
7. Gerya T. Introduction to Numerical Geodynamic Modelling. Cambridge, Cambridge University Press, 2010.
8. Ismail-Zadeh A., Tackley P. Computational methods in Geodynamics. Cambridge, Cambridge University Press, 2010.
9. Ribe N.M., et al. Buckling instabilities of subducted lithosphere beneath the transition zone. Earth and Planetary Science Letters, 2007, 254, P. 173–179.
10. Griffiths R.W. The Dynamics of Lava Flows. Annual Review of Fluid Mechanics, 2000, 32(1), P. 477–518.
11. Griffiths I.M., Howell P.D. The surfacetension-driven evolution of a two-dimensional annular viscous tube. Journal of Fluid Mechanics, 2007, 593, P. 181–208.
12. Griffiths I.M., Howell P.D. Mathematical modelling of non-axisymmetric capillary tube drawing. Journal of Fluid Mechanics, 2008, 605, P. 181–206.
13. Gerasimenko N., Pavlov B. Scattering problems on non-compact graph. Theor. Math. Phys., 1988, 74, P. 230–240.
14. Exner P. and Seba P. Free quantum motion on a branching graph. Rep. Math. Phys., 1989, 28, P. 7–26.
15. Berkolaiko G., Kuchment P., Introduction to Quantum Graphs. AMS, Providence, 2012.
16. Kostrykin V., Schrader R. Laplacians on metric graphs: eigenvalues, resolvents and semigroups. Quantum graphs and their applications, 201-225, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006.
17. Popov I.Yu., Skorynina A.N., Blinova I.V. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, P. 033504/1-20.
18. Eremin D.A., Grishanov E.N., Nikiforov D.S., Popov I.Y. Wave dynamics on time-depending graph with Aharonov-Bohm ring. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(4), P. 457–463.
19. Panasenko G.P. Asymptotic expansion of the solution of Navier-Stokes equation in tube structure and partial asymptotic decomposition of the domain. Applicable Analysis, 2000, 76(3), P. 363–381.
20. Panasenko G.P., Stavre R. Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall. J. Math. Pures Appl., 2006, 85, P. 558–579.
21. Panasenko G.P., Stavre R. Asymptotic analysis of the Stokes flow in a thin cylindrical elastic tube. Applicable Analysis, 2012, 91(11), P. 1999-2027.
22. Melikhov I.F., Popov I.Y. Asymptotic analysis of thin viscous plate model. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(4), P. 447-456.
23. Post O. Branching quantum waveguides with Dirichlet boundary conditions: the decoupling case. J. Phys. A: Math. Gen., 2005, 38, P. 4917–4931.
24. Molchanov S., Vainberg B. Scattering solutions in networks of thin fibers: small diameter asymptotics. Comm. Math.Phys., 2007, 273, P. 533–559.
25. Popov I.Yu., Eremin D.A., Ivanov D.A. Regular potential approximation for delta-perturbation supported by curve of the Laplace-Beltrami operator on the sphere. Z. Anal. Anwen., 2012, 31(2), P. 125–137.
26. Jivkov A.P., Hollis C., Etiese F., McDonald S.A., Withers P.J. A novel architecture for pore network modelling with applications to permeability of porous media. J. Hydrology, 2013, 486, P. 246–258.
27. Kovaleva M.O., Popov I.Y. Harnack’s Inequality for Stokes Graph. Zeitschrift fur Analysis und ihre Anwendungen, 2016, 35(4), P. 383-396.
28. Cacciapuoti C. and Exner P. Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide. J. Phys. A., 2007, 40, P. F511–F523.
29. Gudzovski A.V. On the computation for hydraulic networks. Doklady Akad. Nauk, 1998, 358, P. 765–767.
30. Pokornyi Yu.V., Penkin O.M., Pryadev V.L., Borovskikh A.V., Lazarev K.P. and Shabrov S.A. Differential Equations on Geometrical Graphs. Moscow, Fizmatlit, 2004.
31. Van Dyke M. Perturbation Methods in Fluid Mechanics. Stanford, Parabolic Press, 1975.
Review
For citations:
Smolkina M.O., Popov I.Y., Blinova I.V., Milakis E. On the metric graph model for flows in tubular nanostructures. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(1):6-11. https://doi.org/10.17586/2220-8054-2019-10-1-6-11