Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of nitrogen impurities on ZnS polymorphism

https://doi.org/10.17586/2220-8054-2019-10-1-86-91

Abstract

The ZnS polymorphs – sphalerite and wurtzite – have the very close formation energies, setting their coexistence in nature. Moreover, numerous cases of a disordered phase formation based on these polymorphs have been registered. However, sphalerite is a common mineral, while wurtzite is rare. Perhaps the wider distribution of sphalerite can be explained by means of stabilizing effect from impurities. In this paper, the most stable form and the localization of nitrogen impurities in both ZnS polymorphs is screened using the methods of quantum chemistry. The influence of impurity on polymorphic wurtzite-sphalerite equilibrium is disclosed. According to the obtained results, the introduction of nitrogen impurities facilitates the domination of sphalerite over wurtzite.

About the Authors

I. S. Popov
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



A. S. Vorokh
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



A. N. Enyashin
Institute of Solid State Chemistry UB RAS
Russian Federation

Ekaterinburg



References

1. Posfai M., Dunin-Borkowski R.E. Sulfides in Biosystems. Rev. Mineral. Geochem., 2006, 61, P. 679–714.

2. Xu J., Murayama M., et al. Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues. Geochim. Cosmochim. Acta, 2016, 180, P. 1–14.

3. Zhang H., Huang F., Gilbert B., Banfield J.F. Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. J. Phys. Chem. B, 2003, 107, P. 13051-13060.

4. Qadri S.B., Skelton E.F., et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B, 1999, 60 (13), P. 9191-9193.

5. Lin P.-C., Hua C.C., Lee T.-C. Low-temperature phase transition of ZnS: The critical role of ZnO. J. Solid Chem., 2012, 194, P. 282–285.

6. Boutaiba F., Belabbes A., Ferhat M., Bechstedt F. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study. Phys. Rev. B, 2014, 89, 245308.

7. Zhao Y., Zhang Y., et al. Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals. J. Am. Chem. Soc., 2004, 126, P. 6874– 6875.

8. Yin L.W., Bando Y., et al. Self-assembled highly faceted wurtzitetype ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater., 2005, 17, P. 1972–1977.

9. La Porta F.A., Andres J., et al. Sphalerite versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide. Phys. Chem. Chem. Phys., 2014, 16, P. 20127–20137.

10. Huang F., Zhang H., Banfield J.F. The Role of Oriented Attachment CityplaceCrystal Growth in Hydrothermal Coarsening of Nanocrystalline ZnS. J. Phys. Chem. B, 2003, 107 (38), P. 10470–10475.

11. Luther G.W., Theberge S.M., Rickard D.T. Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochim. Cosmochim. Acta, 1999, 63, P. 3159–3169.

12. Zhang H., Huang F., Gilbert B., Banfield J.F. Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. J. Phys. Chem. B, 2003, 107, P. 13051–13060.

13. Vasil’ev V.I. New data on the composition of metacinnabar and Hg-sphalerite with an isomorphous Cd admixture. Russian Geology and Geophysics, 2011, 52, P. 701–708.

14. Nitta E., Kimata M., et al. Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite. J. Mineral. Petrol. Sci., 2008, 103, P. 145–151.

15. Chaplygin I.V., Mozgova N.N., et al. Minerals of the system ZnS–CdS from fumaroles of the Kudriavy volcano, Iturup Island, Kuriles, Russia. Can. Mineral., 2007, 45, P. 709–722.

16. Yang B., Liu B., et al. Zn-dopant dependent defect evolution in GaN nanowires. Nanoscale, 2015, 7, P. 16237–16245.

17. George L.L., Cook N.J., Ciobanu C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev., 2016, 77, P. 97–116.

18. Pfaff K., Koenig A., et al. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chem. Geol., 2011, 286, P. 118–134.

19. Moreau J.W., Weber P.K., et al. Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles. Science, 2007, 316, P. 1600–1603.

20. Zhang R., Du B., et al. Molybdenum-doped ZnS sheets with dominant f111g facets for enhanced visible light photocatalytic activities. J. Colloid Interface Sci., 2017, 507, P. 200–208.

21. Kudo A., Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst, Chem. Commun., 2000, 15, P. 1371–1372.

22. Kumar K.C., Rao N.M., Kaleemulla S., Rao G.V. Structural, optical and magnetic properties of Sn doped ZnS nano powders prepared by solid state reaction. Physica B: Condens. Matter., 2017, 522, P. 75–80.

23. Patel P.C., Ghosh S., Srivastava P.C. Effect of impurity concentration on optical and magnetic properties in ZnS: Cu nanoparticles. Physica E: Low-dimens. Syst. Nanostruct., 2017, 93, P. 148–152.

24. Al-Jawad S.M.H., Ismail M.M. Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles. J. Opt. Techn., 2017, 84, P. 495–499.

25. Muruganandham M., Kusumoto Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst. J. Phys. Chem. C, 2009, 113, P. 16144–16150.

26. Popov I.S., Kozhevnikova N.S., et al. Nitrogen-doped ZnS nanoparticles: Soft-chemical synthesis, EPR statement and quantum-chemical characterization. Mater. Chem. Phys., 2018, 215, P. 176–182.

27. Popov I.S., Vorokh A.S., Enyashin A.N. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study. Chem. Phys., 2018, 510, P. 70–76.

28. Seifert G. Tight-binding density functional theory: an approximate Kohn–Sham DFT scheme. J. Phys. Chem. A, 2007, 111, P. 5609–5613.

29. Frauenheim T., Seifert G., et al. A Self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi B, 2000, 217, P. 41–62.

30. Koster A.M., Flores R., et al. Program deMon (version 1.1.0). National Research Council, Ottawa, Canada, 2003.

31. Gaus M., Lu X., Elstner M., Cui Q. Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput., 2014, 10, P. 1518–1537.

32. Lu X., Gaus M., Elstner M., Cui Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B, 2015, 119, P. 1062–1082.

33. Soler J.M., Artacho E., et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter, 2002, 14 (11), P. 2745–2779.

34. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics, 1996, 14, P. 33–38.

35. Videolinks: (Movie 1) Defect model I in wurtzite. URL: https://youtu.be/mr9ZPl5Pj8Y. (Movie 2) Defect model I in sphalerite. URL: https://youtu.be/dEyK7hbN3c. (Movie 3) Defect model II in wurtzite. URL: https://youtu.be/7yHPhP6EEhA. (Movie 4) Defect model II in sphalerite. URL: https://youtu.be/qHVyrS8QeQ. (Movie 5) Defect model III in wurtzite. URL: https://youtu.be/04-pDu1IruE. (Movie 6) Defect model III in sphalerite. URL: https://youtu.be/0HRE-Pfh3g.

36. Derek W.P. The semiconductors-information web-site. URL: http://www.semiconductors.co.uk/propiivi5410.htm (on the date 05.12.2018).

37. Long R., English N.J. Magnetic properties of first-row element-doped ZnS semiconductors: A density functional theory investigation. Phys. Rev. B, 2009, 80, 115212.


Review

For citations:


Popov I.S., Vorokh A.S., Enyashin A.N. Effect of nitrogen impurities on ZnS polymorphism. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(1):86-91. https://doi.org/10.17586/2220-8054-2019-10-1-86-91

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)