Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Direct synthesis of hydrogenated graphene via hydrocarbon decomposition in plasmas

https://doi.org/10.17586/2220-8054-2019-10-1-102-106

Abstract

We study graphene synthesis in a plasma-jet reactor. Graphene is obtained via decomposition of hydrocarbons in the plasma produced in the DC plasma torch. The products of synthesis are characterized using the following methods: electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, thermal analysis and express-gravimetry. We make the conclusion that, at the few-layer graphene samples, their hydrogenation takes place. The maximal hydrogen-to-carbon ratio was 1:4.

About the Authors

M. B. Shavelkina
Joint Institute for High Temperatures of Russian Academy of Sciences
Russian Federation

Izhorskaya st. 13 Bd. 2, Moscow, 125412



R. H. Amirov
Joint Institute for High Temperatures of Russian Academy of Sciences
Russian Federation

Izhorskaya st. 13 Bd. 2, Moscow, 125412



References

1. Sofo J.O., Chaudhari A.S., Barber G.D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B, 2007, 75, P. 153401.

2. Chernozatonskii L.A., Artyukh A.A., Kvashnin D.G. Formation of graphene quantum dots by “Planting” hydrogen atoms at a graphene nanoribbon. JETP Lett., 2012, 95, P. 266–270.

3. Huang L.F., Zeng Z. Lattice dynamics and disorder-induced contraction in functionalized graphene. J. Appl. Phys., 2013, 113, P. 083524.

4. Gao H., Wang L., et al. Band gap tuning of hydrogenated graphene: H coverage and configuration dependence. J. Phys. Chem. C, 2011, 115, P. 3236–3242.

5. Pumera M., Wong C.H. Graphane and hydrogenated graphene. Chem. Soc. Rev., 2013, 42, P. 5987–5995.

6. Zhou C., Chen S., et al. Graphene’s cousin: the present and future of graphane. Nanoscale Res. Lett., 2014, 9, P. 26.

7. Jones J.D., Mahajan K.K., et al. Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon, 2010, 48, P. 2335–2340.

8. Smith D., Howie R.T., et al. Hydrogenation of graphene by reaction at high pressure and high temperature. ACS Nano, 2015, 9, P. 8279– 8283.

9. Eng A.Y., Poh H.L., et al. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via birch reduction of graphite oxides. ACS Nano, 2013, 7, P. 5930–5939.

10. Abdelkader A.M., Patten H.V., et al. Electrochemical exfoliation of graphite in quaternary ammonium-based deep eutectic solvents: a route for the mass production of graphane. Nanoscale, 2015, 7, P. 11386–11392.

11. Shavelkina M.B., Amirov R.H., Ivanov P.P., Filimonova E.A. Conversion of hydrocarbons in the plasma jet to produce carbon nanostructures. Proceedings of the Workshop on Magneto-Plasma Aerodynamics, Moscow, Russia, 5–7 April 2017, P. 92–93.

12. Amirov R., Shavelkina M., et al. Direct synthesis of porous multilayer graphene materials using thermal plasma at low pressure. J. of Nanomaterials, 2015, 2015, P. 724508.

13. Back M.H. Mechanism of the pyrolysis of acetylene. Can. J. of Chem., 1971, 49, P. 2199–2204.

14. Tsyganov D., Bundaleska N., et al. On the plasma-based growth of ’flowing’ graphene sheets at atmospheric pressure conditions. Plasma Sources Sci. Technol., 2016, 25, P. 015013.

15. Norinaga K., Deutschmann O. Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Ind. Eng. Chem. Res., 2007, 46, P. 3547–3557.

16. Khalilov U., Bogaerts A., Neyts E.C. Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors. Nanoscale, 2014, 6, P. 9206–9214.

17. Keidar M., Shashurin A., et al. Arc plasma synthesis of carbon nanostructures: where is the frontier? J. Phys. D: Appl. Phys., 2011, 44, 174006.

18. Wang Q., Wang X., Chai Z., Hu W. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem. Soc. Rev., 2013, 42, P. 8821–8834.

19. Kim J., Suh J.S. Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano, 2014, 8, P. 4190–4196.

20. Kim J., Heo S.B., Gu G.H., Suh J.S. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system. Nanotechnology, 2010, 21, P. 095601.

21. Amirov R., Isakaev E., Shavelkina M., Shatalova T. Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch. J. Phys.: Conf. Ser., 2014, 550, P. 012023.

22. Isakaev E.Kh., Sinkevich O.A., et al. Thermal fluxes in a generator of low temperature plasma with a divergent channel of the outlet electrode. High Temperature, 2011, 6, P. 797–802.

23. Tozzini V., Pellegrini V. Prospects for hydrogen storage in graphene. ArXiv:1207.5703, 2012. URL: https://arxiv.org/abs/1207.5703.

24. Elias D.C., Nair R.R, et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323, P. 610–613.

25. Sahin H., Leenaerts O., Singh S.K., Peeters F.M. Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5, P. 255–272.

26. Scheffler M., Haberer D., et al. Probing local hydrogen impurities in quasi-free-standing graphene. ACS Nano, 2012, 6, P. 10590–10597.

27. Denisov E.A., Kompaniets T.N., Kurdyumov A.A., Mazaev S.N. Atomic hydrogen interaction with various graphite types. J. Plasma Devices and Operations, 1998, 6, P. 265–269.

28. Barinov A., Malcioglu O.B., et al. Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations J. Phys. Chem. C, 2009, 113, . 9009–9013.

29. Shavelkina M.B., Amirov R.H., Shatalova T.B. The effect of reactor geometry on the synthesis of graphene materials in plasma jets. J. of Phys.: Conf. Ser., 2017, 857, P. 012040.

30. Ferrari A.C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun., 2007, 143, P. 47–57.

31. Ferrari A.C., Meyer C., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97, P. 187401.

32. Jorio A., Dresselhaus M.S., Saito R., Dresselhaus G. Raman Spectroscopy in Graphene Related System, Wiley-VCH: Germany, 2011.

33. Son J., Lee S., et al. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nature Comm., 2016, 7, P. 13261.

34. Cancado L.G., Jorio A., et al. Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett., 2011, 11, P. 3190–3196.

35. Nechaev Y.S., Veziroglu T.N. Thermodynamic aspects of the stability of the grapheme/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem. Adv. Mat. Phys. Chem., 2013, 3, P. 255–280.


Review

For citations:


Shavelkina M.B., Amirov R.H. Direct synthesis of hydrogenated graphene via hydrocarbon decomposition in plasmas. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(1):102-106. https://doi.org/10.17586/2220-8054-2019-10-1-102-106

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)