Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Preparation of Au/TiO2/Ti memristive elements via anodic oxidation

https://doi.org/10.17586/2220-8054-2017-8-6-823-829

Abstract

In the present paper we report utilization of porous and barrier type of titania films formed by anodic oxidation as an active layer of the memristive element in the Au–TiO2–Ti structure. The comparison of semiconductor properties of porous and barrier type of anodic titania was performed via the Mott–Schottky technique. The obtained memristive elements show the bipolar type of switching governed by Schottky barrier screening. For barrier type film the switching potential is equal to −1.5 V and the ratio of resistance in OFF and ON stage (Roff /Ron) is equal to 34. For porous type films, the switching potential is equal to −0.6 V and Roff /Ron = 131. Moreover, we observed the dependence of Roff /Ron on the voltage sweeping rate, which can be explained by the limitation in diffusion of oxygen vacancies through the oxide layer.

About the Authors

P. A. Morozova
Skolkovo Institute of Science and Technology; Lomonosov Moscow State University, Department of Materials Science
Russian Federation

Skolkovo, Nobel Street, 3, Moscow Region, 143026; Leninskie gory, 1, building 73, Moscow, 119991



D. I. Petukhov
Lomonosov Moscow State University, Department of Materials Science
Russian Federation

Leninskie gory, 1, building 73, Moscow, 119991



References

1. Kyung M.K., Tae H.P. Dual Conical Conducting Filament Model in Resistance Switching TiO2 Thin Films. Scientific Reports, 2015, 5, P. 7844.

2. Zhang F., Li X.M., Gao X.D. The unification of filament and interfacial resistive switching mechanisms for titanium dioxide based memory devices. Journal of applied physics, 2011, 109, 104504.

3. Ssenyange S., Yan H. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions. Langmuir, 2006, 22 (25), P. 10689–10696.

4. Pickett M.D. The Materials Science of Titanium Dioxide Memristors. Electronic Thesis and Dissertations UC Berkeley, 2010, URL: http://digitalassets.lib.berkeley.edu/etd/ucb/text/Pickett_berkeley_0028E_11006.pdf

5. Yang J.J., Pickett M.D., Li X. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008, 3, P. 429–433.

6. Albu S.P. et al. TiO2 nanotube layers: Flexible and electrically active flow-through membranes. Electrochemistry Communications, 2010, 12, P. 1352–1355.

7. Prusakova V., Collini C., Nardi M. The development of solgel derived TiO2 thin films and corresponding memristor architectures. RSC Adv., 2017, 7, P. 1654–1663.

8. Diamanti M.V., Pisoni R., Cologni A. Anodic oxidation as a means to produce memristive films. J. Appl. Biomater. Funct. Mater., 2016, 14 (3), P. 290–295.

9. Abunahla H., Mohammad B. Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Springer International Publishing, 2018, 106 p.

10. Diamanti M.V., Spreafico F.C., Pedeferri M.P. Production of anodic TiO2 nanofilms and their characterization. Physics Procedia, 2013, 40, P. 30–37.

11. Pham Hieu H., Wang Lin-Wang. Oxygen vacancy and hole conduction in amorphous TiO2. Phys. Chem. Chem. Phys., 2015, 17, P. 541– 550.

12. Petukhov D.I., et al. Formation mechanism and packing options in tubular anodic titania films. Microporous and Mesoporous Materials, 2008, 114, P. 440–447.

13. Zixue S., Wuzong Z. Porous Anodic Metal Oxides, University of St. Andrews, 2010.

14. Wei W. Advanced Electrochemical Approaches for the Self-organized Formation of One-Dimensional Oxide Nanoarchitectures: From Transition Metals to Superlattices. Universiry of Erlangen–Nürnberg, 2012, URL: https://opus4.kobv.de/opus4-fau/files/2334/wei_thesis.pdf.

15. Chen X., Mao S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 2007, 107, P. 2891–2959.

16. Keller F., Hunter M.S., Robinson D.L. Structural Features of Oxide Coatings on Aluminum. J. Electrochem. Soc., 1953, 100 (9), P. 411– 419.

17. OSullivan J.P., Wood G.C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. Lond. A, 1970, 317 (1531), P. 511–543.

18. Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, P. 169–189.

19. Diop D.K., Simonot L. Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrate. Adv. Mater. Interfaces, 2015, 2, 1500134.

20. Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed., 2011, 50, P. 2904–2939.

21. Kim I.D., Rothschild A., Lee B.H., Kim D.Y. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett., 2006, 6 (9), P. 2009–2013.

22. Seo M.-H., Yuasa M., et al. Detection of organic gases using TiO2 nanotube-based gas sensors. Procedia Chem., 2009, 1, P. 192–195.

23. Middlemas S., et al. A new method for production titanium dioxide pigment. Hydrometallurgy, 2013, 131-132, P. 107–113.

24. Yoo J.E., Lee K. Highly ordered TiO2 nanotube-stumps with memristive response. Electrochemistry Communications, 2013, 34, P. 177– 180.

25. Vokhmintsev A.S., Weinstein I.A. Memristive Effect in a Nanotubular Layer of Anodized Titanium Dioxide. Bulletin of the Russian Academy of Sciences. Physics, 2014, 78 (9), P. 932–935

26. Miller K., Nalwa K.S. Memristive Behavior in Thin Anodic Titania. IEEE Electron device letters, 2010, 31 (7), P. 737–739.

27. Smith Y.R., Ray R.S. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications. Materials, 2013, 6 (7), P. 2892–2957.

28. Ghafar A., Chong C. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale Research Letters, 2011, 6, P. 332–338.

29. Baram N., Yair E.-E. Electrochemical Impedance Spectroscopy of Porous TiO2 for Photocatalytic Applications. J. Phys. Chem. C, 2010, 114, P. 9781–9790.

30. Jeong D.S., Schroeder H., Waser R. Impedance spectroscopy of TiO2 thin films showing resistive switching. Applied Physics Letters, 2006, 89, 082909.

31. Harrington S.P., Devine T.M. Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests. Journal of The Electro-chemical Society, 2008, 155 (8), P. 381–386.

32. Ling Y., Ren F., Feng J. Reverse bias voltage dependent hydrogen sensing properties on Au–TiO2 nanotubes Schottky barrier diodes. International journal of hydrogen energy, 2016, 41, P. 7691–7698.

33. Regonini D., Bowen C.R., Jaroenworaluck A., Stevens R. A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Materials Science and Engineering R, 2013, 74, P. 377–406.

34. Macak J.M., Tsuchiya H., Schmuki P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angew. Chem. Int. Ed., 2005, 44, P. 2100–2102.

35. Czoska A.M., Livraghi S. The Nature of Defects in Fluorine-Doped TiO2. J. Phys. Chem. C, 2008, 112 (24), P. 8951–8956.

36. Lide D.R. CRC Handbook of Chemistry and Physics, 89 edition, CRC Press, Boston, 2008, P. 12–114.

37. Smith G.X R., Crook R., Wadhawan J.D. Measuring the work function of TiO2 nanotubes using illuminated electrostatic force microscopy. Journal of Physics: Conference Series, 2013, 471, 012045.

38. Miller K.J. Fabrication and modeling of thin-film anodic titania memristors, 2010, URL: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2430&context=etd.

39. Yang L. Resistive switching in TiO2 thin films. Forschungszentrum Jülich, Jülich, 2011.

40. Gils S.V., Mast P., Stijns E., Terryn H. Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry. Surf Coat Technol., 2004, 185 (2-3), P. 303–310.


Review

For citations:


Morozova P.A., Petukhov D.I. Preparation of Au/TiO2/Ti memristive elements via anodic oxidation. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):823-829. https://doi.org/10.17586/2220-8054-2017-8-6-823-829

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)