Quantum random number generator based on homodyne detection
https://doi.org/10.17586/2220-8054-2017-8-2-239-242
Abstract
A quantum random number generator (QRNG) based on the quantum nature of vacuum fluctuations allows one to obtain random bit sequences that can be used in applications that require a high degree of randomness. In that type of quantum random generation system, optical beam splitters with two inputs and two outputs are normally used. A comparison of Y-splitter and spatial beam splitters shows that for two types of optical splitters, the quantum mathematical description of output signals is identical. This allows the use of fiber Y-splitters in practical QRNG schemes. The possibility of generating true random bits was demonstrated experimentally by using quantum random number generator based on homodyne detection.
About the Authors
A. E. IvanovaRussian Federation
Kronverkskiy, 49, St. Petersburg, 197101
S. A. Chivilikhin
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
A. V. Gleim
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
References
1. Scarany V., Bechmann-Pasquinucci H., et al. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81, P. 1301–1350.
2. Jennewein T., Achleitner U., et al. A fast and compact quantum random number generator. Rev. Sci. Instrum., 2000, 71 (4), P. 1675–1680.
3. Kwon O., Cho Y.-W., Kim Y.-H. Quantum random number generator using photon-number path entanglement. Appl. Opt., 2009, 48, P. 1774–1778.
4. Qi B., Chi Y.-M., et al. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 2010, 35, P. 312–314.
5. Reidler I., Aviad Y., Rosenbluh M., Kanter I. Ultrahigh-Speed Random Number Generation Based on a Chaotic Semiconductor Laser. Phys. Rev. Lett., 2009, 103, P. 024102.
6. Dynes J.F., Yuan Z.L, et al. A high speed, post-processing free, quantum random number generator. Appl. Phys. Lett., 2008, 93, P. 031109.
7. Shen Y., Tian L., Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A, 2010, 81, P. 063814.
8. Gabriel C., Wittmann C., et al. A generator for unique quantum random numbers based on vacuum states. Nature Phot., 2010, 4, P. 711–715.
9. Symul T., Assad S.M. and Lam P.K. Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett., 2011, 98, P. 231103.
10. Ivanova A.E., Chivilikhin S.A., Gleim A.V. Using of optical splitters in quantum random number generators, based on fluctuations of vacuum. Journal of Physics: Conference Series, 2016, 735, P. 012077(1–4).
11. Ivanova A.E., Chivilikhin S.A., Gleim A.V. The use of beam and fiber splitters in quantum random number generators based on vacuum fluctuations. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7, P. 378–383.
12. Menezes A., van Oorschot P., Vanstone S. Handbook of Applied Cryptography. CRC Press, 1996, 816 p.
Review
For citations:
Ivanova A.E., Chivilikhin S.A., Gleim A.V. Quantum random number generator based on homodyne detection. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):239-242. https://doi.org/10.17586/2220-8054-2017-8-2-239-242