Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthetic pathway of a Cu2ZnSnS4 powder using low temperature annealing of nanostructured binary sulfides

https://doi.org/10.17586/2220-8054-2017-8-6-787-792

Abstract

Cost-effective route to quaternary Cu2ZnSnS4 nanostructured powder fabrication was developed by utilizing a two-step approach. In the first stage, nanostructured binary sulfides Cu2S, ZnS, and SnS were synthesized by chemical bath deposition. In the second stage, ternary sulfide Cu2ZnSnS4 was obtained by low-temperature annealing of binary sulfides’ mixtures at 70 and 300 C. The compounds obtained on both stages were investigated by X-ray diffraction, scanning electron microscopy, optical absorbance and Raman spectroscopy. On the basis of our findings, we established that Cu2ZnSnS4 phase has already formed at 300 C. The synthetic pathway revealed in this work allows reducing the temperature of Cu2ZnSnS4 synthesis and as a result, offers the possibility of reducing the manufacturing costs. This work was supported by the Russian Foundation for Basic Research (grant No. 16-03-00566), UrB RAS (grant No.15-20-3-11).

About the Authors

N. S. Kozhevnikova
Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences
Russian Federation

620990, Pervomayskaya str. 91, Ekaterinburg



A. S. Vorokh
Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences
Russian Federation

620990, Pervomayskaya str. 91, Ekaterinburg



O. I. Gyrdasova
Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences
Russian Federation

620990, Pervomayskaya str. 91, Ekaterinburg



I. V. Baklanova
Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences
Russian Federation

620990, Pervomayskaya str. 91, Ekaterinburg



A. N. Titov
Ural Federal University; Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

620002, Mira str. 19, Ekaterinburg; 620108, S. Kovalevskaya str.18, Ekaterinburg



M. V. Kuznetsov
Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences
Russian Federation

620990, Pervomayskaya str. 91, Ekaterinburg



References

1. Tan J.M.R., Lee Y.H., Pedireddy S., Baikie T., Ling X.Y., Wong L.H. Understanding the Synthetic Pathway of a Single-Phase Quarternary Semiconductor Using Surface-Enhanced Raman Scattering: A Case of Wurtzite Cu2ZnSnS4 Nanoparticles. J. Am. Chem. Soc., 2014, 136(18), P. 6684–6692.

2. USGS, Commodity Statistics and Information, USGS Minerals Information, 2010. URL: http://minerals.usgs.gov/minerals/pubs/commodity/.

3. Choubrac L., Lafond A., Guillot-Deudon C., Moe¨lo Y., Jobic S. Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds. Inorg. Chem., 2012, 51(6), P. 3346–3348.

4. Barkhouse D.A.R., Gunawan O., Gokmen T., Todorov T.K., Mitzi D.B. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt: Res. Appl., 2012, 20, P. 6–11.

5. Bag S., Gunawan O., Gokmen T., Zhu Y., Todorov T.K., Mitzi D.B. Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency. Energy Environ. Sci., 2012, 5, P. 7060–7065.

6. Katagiri H., Jimbo K., Maw W.S., Oishi K., Yamazaki M., Araki H., Takeuchi A. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009, 517(7), P. 2455–2460.

7. Hall S.R., Szymanski J.T., Stewart J.M. Kesterite Cu2(Zn Fe)SnS4 and stannite Cu2(FeZn)SnS4 structurally similar but distinct minerals. Can. Mineral., 1978, 16, P. 131–137.

8. Muska K., Kauk M., Altosaar M., Pilvet M., Grossberg M., Volobujeva O. Synthesis of Cu2ZnSnS4 monograin powders with different compositions. Energy Procedia, 2011, 10, P. 203–207.

9. Nozaki H., Fukano T., Ohta S., Seno Y., Katagiri H., Jimbo K. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion. J. Alloys Comp., 2012, 524, P. 22–25.

10. Katagiri H., Jimbo K., Tahara M., Araki H., Oishi K. The influence of the composition ratio on CZTS-based thin film solar cells. MRS Proceedings, 2009, P. 1165.

11. Ito K., Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japan. J. Appl. Phys., 1988, 27(11R), P. 2094.

12. Katagiri H., Ishigaki N., Ishida T., Saito K. Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Japan. J. Appl. Phys., 2001, 40(2R), P. 500.

13. Tanaka T., Kawasaki D., Nishio M., Guo Q., Ogawa H. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Stat. Sol. C, 2006, 3(8), P. 2844–2847.

14. Hibberd C.J., Chassaing E., Liu W., Mitzi D.B., Lincot D., Tiwari A.N., Hibberd C.J., Chassaing E., Liu W., Mitzi D.B., Lincot D., Tiwari A.N. Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovolt.: Res. Appl., 2010, 18, P. 434–452.

15. Nakayama N., Ito K. Sprayed films of stannite Cu2ZnSnS4. Appl. Surf. Sci., 1996, 92, P. 171–175.

16. Kamoun N., Bouzouita H., Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15), P. 5949–5952.

17. Kumar Y.B.K., Babu G.S., Bhaskar P.U., Raja V.S. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol. Energy Mater. Solar Cells, 2009, 93(8), P. 1230–1237.

18. Kumar Y.B.K., Babu G.S., Bhaskar P.U., Raja V.S. Effect of starting-solution pH on the growth of Cu2ZnSnS4 thin films deposited by spray pyrolysis. Phys. Stat. Sol. A, 2009, 206(7), P. 1525–1530.

19. Scragg J.J., Dale P.J., Peter L.M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochem. Comm., 2008, 10(4), P. 639–642.

20. Sun L., He J., Kong H., Yue F., Yang P., Chu J. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar Cells, 2011, 95, P. 2907–2913.

21. Guc M., Levcenko S., Bodnar I.V., Izquierdo-Roca V., Fontane X., Volkova L.V., Arushanov E. Pérez-Rodríguez A. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Sci Rep., 2016, 6, P. 19414.

22. Cifuentes C., Botero M., Romero E., Calderón C., Gordillo G. Optical and structural studies on SnS films grown by co-evaporation. Braz. J. Phys., 2006, 36(3b), P. 1046–1049.

23. Sarswat P.K., Free M.L. A study of energy band gap versus temperature for Cu2ZnSnS4 thin films. Physica B: Cond. Mat., 2012, 407(1), P. 108–111.

24. Malerba C., Biccari F., Ricardo C.L.A., Valentini M., Chierchia R., Müller M., Santoni A., Esposito E., Mangiapane P., Scardi P., Mittiga A. CZTS stoichiometry effects on the band gap energy. J. Alloys and Compounds, 2014, 582, P. 528–534.


Review

For citations:


Kozhevnikova N.S., Vorokh A.S., Gyrdasova O.I., Baklanova I.V., Titov A.N., Kuznetsov M.V. Synthetic pathway of a Cu2ZnSnS4 powder using low temperature annealing of nanostructured binary sulfides. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):787-792. https://doi.org/10.17586/2220-8054-2017-8-6-787-792

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)