Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Energetics of carbon nanotubes with open edges: Modeling and experiment

https://doi.org/10.17586/22208054201785635640

Abstract

Modeling approaches based on the density functional theory (DFT): the Kohn–Sham (KS) method and orbitalfree (OF) method are used to for calculation of the binding energies per atom as functions of the diameter of singlewall carbon nanotubes (SWCNTs) with the open ends. It is shown that this energy has a minimum at a diameter of about 1.1 – 1.2 nm. The experiments made by means of Raman spectroscopy have shown that diameters of SWCNTs mainly lie in the range of 1 – 1.5 nm.

About the Authors

V. G. Zavodinsky
Institute for Material Science
Russian Federation

153, Tikhookeanskaya st., 680042, Khabarovsk



O. A. Gorkusha
Khabarovsk Department, Institute of Applied Mathematics
Russian Federation

54, Dzerzhinskogo st., 680000, Khabarovsk



A. P. Kuz’menko
SouthWest State University
Russian Federation

94, 50 let Oktyabrya st., 305040 Kursk



References

1. Lee K., Chong Rae Park. Effects of chirality and diameter of singlewalled carbon nanotubes on their structural stability and solubility parameters. Royal Society of Chemistry Advances, 2014, 4, P. 33578–33581.

2. Chin Li Cheung, Andrea Kurtz, Hongkun Park, Charles M. Lieber. DiameterControlled Synthesis of Carbon Nanotubes. J. Phys. Chem. B, 2002, 106, P. 2429–2433.

3. Eletskiy A.V. Carbon nanotubes. Uspekhi Fizicheskikh Nauk, 1997, 167 (9), P. 945–972 (in Russian).

4. Kiang C.H., Goddard III W.A., Beyers R., Bethune D.S. Carbon nanotubes with singlelayer walls. Carbon, 33 (7), P. 903–914.

5. Boguslavskaya E.S., Bazhin I.V. Mechanical properties of carbon nanotubes and of their contacts. Fazovye perekhody, uporyadochennye sostoyaniya i novye materialy, 2009, 11, 4 p. (in Russian).

6. Hohenberg H., Kohn W. Inhomogeneous electron gas. Phys. Rev. B, 1964, 136, P. 864–871.

7. Kohn W., Sham J.L. Selfconsistent equations including exchange and correlation effects. Phys. Rev. A, 1965, 140, P. 1133–1138.

8. Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for polyatomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun., 1997, 107, P. 187–205.

9. Zavodinsky V.G., Gorkusha O.A. A simple quantummechanics way to simulate nanoparticles and nanosystems without calculation of wave functions. International Scholarly Research Network Nanomaterials, 2012, 531965, 3 p.

10. Zavodinsky V.G., Gorkusha O.A. QuantumMechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56 (11), P. 2329–2335.

11. Zavodinsky V.G., Gorkusha O.A. Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (3), P. 427–432.

12. Zavodinsky V.G., Gorkusha O.A. Development of the orbital free approach for heteroatomic systems. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (6), P. 1010–1016.

13. Wang Y.A., Carter E.A. Theoretical Methods in Condensed Phase Chemistry. In Progress in Theoretical Chemistry and Physics, Kluwer, Dordrecht, 2000, P. 117–184.

14. Huajie Chen, Aihui Zhou. Orbitalfree density functional theory for molecular structure calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1 (1), P. 1–28.

15. Karasiev V.V., Jones R.S., Trickey S.B., Harris F.E. Recent advances in developing orbitalfree kinetic energy functionals. In New Developments in Quantum Chemistry, 2009, P. 25–54.

16. Chakraborty D. Computing the kinetic energy from electron distribution functions. Ph.D. (Chemistry) Thesis, McMaster University, Hamilton, Ontario, Canada, 2011.

17. Huang C., Carter E.A. Nonlocal orbitalfree kinetic energy density functional for semiconductors. Phys. Rev. B, 2010, 81, 045206–15.

18. Ho G.S., Ligneres V.L., Carter E.A. Introducing PROFESS: A new program for orbitalfree density functional theory calculations. Comp. Phys. Commun., 2008, 179, P. 839–854.

19. Sarry A.M., Sarry M.F. On the density functional theory. Fizika Tverdogo Tela, 2012, 54 (6), P. 1237–1243 (in Russian).

20. Bobrov V.B., Trigger S.A. The problem of the universal density functional and the density matrix functional theory. J. Exper. Theor. Phys., 2013, 116 (4), P. 635–640.

21. Perdew J.P., Wang Y.A. Accurate and simple density functional for the electronic exchange energy. Phys. Rev. B, 1986, 33, P. 8800–8802.

22. Huhtala M., Kuronen A., Kimmo Kaski. Computational studies of carbon nanotube structures. Computer Physics Communications, 2002, 147, P. 91–96.

23. Danilov C.V. Simulation of atomic structure and the XRay structure analysis of carbon nanotubes. PhD Thesis, Petrozavodsk State University, Petrozavodsk, Russia, 2013 (in Russian).

24. Barnard A.S., Russo S.P., Snook I.K. Surface structure of cubic diamond nanowires. Surf. Sci., 2003, 538, P. 204–210.

25. Cheng Yang, H. Chuan Kang. Cluster study of the dimer geometry on the C(100) surface. Surf. Sci., 1998, 409, P. 521–527.

26. Kuzmenko A.P., Thet Phyo Naing, et al. Selfassembly and Selforganization Processes of Carbon Nanotubes in the Colloidal Systems. J. of Nanoand Electronic Physics, 2015, 7 (4), P. 04014(3).

27. Thomsen C., Reich S. Raman scattering in carbon nanotubes. Topics Appl. Physics, 2007, 108, P. 115–232.


Review

For citations:


Zavodinsky V.G., Gorkusha O.A., Kuz’menko A.P. Energetics of carbon nanotubes with open edges: Modeling and experiment. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):635–640. https://doi.org/10.17586/22208054201785635640

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)