Instantons describing tunneling between magnetic states at finite temperature
https://doi.org/10.17586/2220-8054-2017-8-6-746-759
Abstract
A method is presented for finding instantons in magnetic systems – optimal paths corresponding to tunneling from one magnetic state to another at a finite temperature. The method involves analytical continuation of the energy to allow for complex values of the angle variables. First, a set of discretization points are placed equally spaced on a chosen energy contour. Then, an estimate of the corresponding temperature is obtained using Landau-Lifshitz dynamics in imaginary time along the contour. Finally, the distribution of the discretization points as well as the energy are systematically refined by converging on the nearest stationary point of the Euclidean action, thereby obtaining a discrete representation of the closest instanton at the given temperature. The method is illustrated with an application to a system consisting of a single spin subject to uniaxial anisotropy and transverse external magnetic field. First-order and second-order crossovers from over-the-barrier mechanism to tunneling are found depending on the applied field, and the difference in the dependence of the instanton temperature on the energy illustrated for the two cases. By comparing the Boltzmann factors for over-the-barrier and tunneling transitions, the crossover temperature between the two mechanisms is estimated for both first- and second-order crossover.
About the Authors
S. M. VlasovRussian Federation
107 Reykjavík, Iceland; Kronverkskiy, 49, St. Petersburg, 197101, Russia
P. F. Bessarab
Russian Federation
107 Reykjavík, Iceland; Kronverkskiy, 49, St. Petersburg, 197101, Russia
V. M. Uzdin
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101; St. Petersburg, 198504
H. Jónsson
Iceland
107 Reykjavík, Iceland; Los Alamos, NM 87545, USA
References
1. Wigner E. The transition state method. Trans. Faraday Soc., 1938, 34, P. 29–41.
2. Kramers H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940, 7(4), P. 284–304.
3. Langer J. S. Statistical theory of the decay of metastable states. Ann. Phys., 1969, 54, P. 258–275.
4. Braun H.-B. Kramers’s rate theory, broken symmetries and magnetization reversal. J. Appl. Physics, 1994, 76, P. 6310–6315.
5. Coffey W. T., Garanin D. A. and McCarthy D. J. Crossover formulas in the Kramers theory of thermally activated escape rates-application to spin systems. Adv. Chem. Phys., 2001, 117, P. 483–765.
6. Fiedler G., Fidler J., Lee J., Schrefl T., Stamps R. L., Braun H. B.,Suess D. Direct calculation of the attempt frequency of magnetic structures using the finite element method. J. Appl. Phys., 2012, 111(9), P. 093917(7 pp.)
7. Bessarab P. F., Uzdin V. M. and Jónsson H. Harmonic Transition State Theory of Thermal Spin Transitions. Phys. Rev. B, 2012, 85, P. 184409(4 pp.)
8. Bessarab P. F., Uzdin V. M. and Jo´nsson H. Potential Energy Surfaces and Rates of Spin Transitions. Z. Phys. Chem., 2013, 227, P. 1543–1557.
9. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. McGraw-Hill, NY, 1965.
10. Miller W. H. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems. J. Chem. Phys., 1975, 62, P. 1899–1906.
11. Coleman S. Fate of the false vacuum: Semiclassical theory Phys. Rev. D, 1977, 15, P. 2929–2936.
12. Callan C., Coleman S. Fate of the false vacuum. II. First quantum corrections. Phys. Rev. D, 1977, 16, P. 1762–1768.
13. Benderskii V. A., Makarov D. E., Wight C. A. Chemical dynamics at low temperatures, John Wiley & Sons, New York, 1994.
14. Mills G., Schenter G. K., Makarov D. E. and Jónsson H. Generalized path integral based quantum transition state theory. Chem. Phys. Letters, 1997, 278, P. 91–96.
15. Mills G., Schenter G. K., Makarov D. E., and Jónsson H. RAW quantum transition state theory. in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne B. J., Ciccotti G., and Coker D. F., World Scientific, 1998, P. 405–421.
16. Craig I. R., Manolopoulos D. E. J. Chem. Phys., 2005, 123, P. 034102.
17. Habershon S., Manolopoulos D. E., Markland T. E. and Miller III T. F. Annu. Rev. Phys. Chem., 2013, 64, P. 387–413.
18. Vineyard G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids, 1957, 3(1), P. 121–127.
19. Mills G., Jónsson H., and Schenter G. K. Reversible work based transition state theory: application to H2 dissociative adsorption. Surf. Sci., 1995, 324, P. 305–337.
20. Jo´nsson H., Mills G., and Jacobsen K. W., “Nudged elastic band method for finding minimum energy paths of transitions,” in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne B. J., Ciccotti G., and Coker D. F., World Scientific, 1998, P. 385–404.
21. Bessarab P. F., Uzdin V. M. and Jónsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comp. Phys. Commun., 2015, 196, P. 335–347.
22. Henkelman G., Jónsson H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys., 1999, 111, P. 7010–7022.
23. Gutiérrez M. P., Argáez C. and Jónsson H. Improved Minimum Mode Following Method for Finding First Order Saddle Points J. Chem. Theor. Comput., 2017, 13, P. 125–134.
24. Richardson J. O. Derivation of instanton rate theory from first principles. J. Chem. Phys., 2016, 144, P. 114106(5 pp.).
25. Andersson S., Nyman G., Arnaldsson A., Manthe U. and Jónsson H. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H + CH4 Reaction Rate. J. Phys. Chem. A, 2009, 113, P. 4468–4478.
26. Einarsdóttir D. M., Arnaldsson A., Óskarsson F. and Jónsson H. Path Optimization with Application to Tunneling. Lecture Notes in Computer Science, 2012, 7134, P. 45–55.
27. Rommel J. B., Liu Y., Werner H.-J. and Kästner J. Role of tunneling in the enzyme glutamate mutase. J. Phys. Chem. B, 2012, 116, P. 13682–13689.
28. Zaslavskii O. Spin tunneling and the effective potential method. Phys. Lett. A, 1990, 145(8), P. 471–475.
29. Ulyanov V. V., Zaslavskii O. B. New methods in the theory of quantum spin systems. Phys. Rep., 1992, 216, P. 179–251.
30. Chudnovsky E. M., Garanin D. A. First- and Second-Order Transitions between Quantum and Classical Regimes for the Escape Rate of a Spin System. Phys. Rev. Lett., 1997, 79, P. 4469–4472.
31. Wernsdorfer W., Aliaga-Alcalde N., Hendrickson D. N., Christou G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature, 2002, 416, P. 406–409.
32. Wernsdorfer W., Murugesu M. and Christou G. Resonant Tunneling in Truly Axial Symmetry Mn12 Single-Molecule Magnets: Sharp Crossover between Thermally Assisted and Pure Quantum Tunneling. Phys. Rev. Lett., 2006, 96, P. 057208(4 pp.)
33. Owerre S. A. and Paranjape M. B. Phase transition between quantum and classical regimes for the escape rate of dimeric molecular nanomagnets in a staggered magnetic field. Phys. Lett. A, 2014, 378, P. 1407–1412.
34. von Delft J. and Henley C. L. Destructive quantum interference in spin tunneling problems. Phys. Rev. Lett., 1992, 69, P. 3236–3239.
35. Loss D., DiVincenzo D. P. and Grinstein G. Suppression of tunneling by interference in half-integer-spin particles. Phys. Rev. Lett., 1992, 69, P. 3232–3236.
36. Garg A. Topologically Quenched Tunnel Splitting in Spin Systems without Kramers Degeneracy. Europhys. Lett. 1993. 22(3), P. 205–210.
37. Vlasov S., Bessarab P. F., Uzdin V. M. and Jónsson H. Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states. Faraday Discuss, 2016, 195, P. 93–109.
38. Vlasov S. M., Bessarab P. F., Uzdin V. M. and Jónsson H. Calculations of the onset temperature for tunneling in multispin systems. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, P. 454–461.
39. Fradkin E. Field Theories of Condensed Matter Physics. Cambridge University Press, New York, 2013, 190 p.
40. Kochetov E. SU(2) coherentstate path integral. J. Math. Phys., 1995, 36, P. 4667–4679.
41. Berry M. V. Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1984, 392(1802), P. 45–57.
42. Henkelman G., Jo´nsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 2000, 113, P. 9978–9985.
43. Vlasov S. M., Bessarab P. F., Uzdin V. M. and Jónsson H. Crossover temperature for quantum tunnelling in spin systems. J. Phys. Conf. Ser., 2016, 741, P. 012183(5 pp.).
44. Bessarab P. F., Uzdin V. M. Jónsson H. Calculations of magnetic states and minimum energy paths of transitions using a noncollinear extension of the Alexander-Anderson model and a magnetic force theorem. Phys. Rev. B, 2014, 89(21), P. 214424(12 pp.).
Review
For citations:
Vlasov S.M., Bessarab P.F., Uzdin V.M., Jónsson H. Instantons describing tunneling between magnetic states at finite temperature. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):746-759. https://doi.org/10.17586/2220-8054-2017-8-6-746-759