Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Asymptotic analysis of thin viscous plate model

https://doi.org/10.17586/2220-8054-2018-9-4-447-456

Abstract

A cell membrane is a very complex medium, which is difficult to study. One of the simplest approaches is to assume it purely elastic or purely viscous. In this paper, we follow the second assumption and derive mathematical model of nearly-planar viscous plate evolving under action of applied forces. The obtained model is non-linear and covers both stretching and bending of the membrane. In contrast to analogous works on viscous sheets, we use a unique scale for velocity components and take a few first terms in asymptotic expansion. The developed approach can be used for description of the cell membrane with nanoparticles inserted.

About the Authors

I. F. Melikhov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



I. Y. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Rudyak V., Belkin A. Molecular dynamics simulation of fluid viscosity in nanochannels. Nanosystems: Phys. Chem. Math., 2018, 9(3), P. 349–355.

2. Jiang Y., Yu Z., Huang X., Chen R., Chen W., Zeng Y., Xu Ch., Min H., Zheng N., Cheng X. A multilayer lateral-flow microfluidic device for particle separation. Microfluid Nanofluid, 2018, 22, P. 40.

3. Celebi A.T., Barisik M., Beskok A. Surface charge-dependent transport of water in graphene nano-channels. Microfluid Nanofluid, 2018, 22, P. 7.

4. Erfle P., Riewe J., Bunjes H., Dietzel A. Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation. Microfluid Nanofluid, 2017, 21, P. 179.

5. Ghasemi A., Amiri H., Zare H., Masroor M., Hasanzadeh A., Beyzavi A., Aref A.R., Karimi M., Hamblin M.R. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluid Nanofluid, 2017, 21, P. 151.

6. Kosheleva O.K., Lai T.C, Chen N.G., Hsiao V., Chen Ch.H. Selective killing of cancer cells by nanoparticle.assisted ultrasound. J. Nanobiotechnol., 2016, 14, P. 46.

7. Okamoto R., Kanemori Y., Komura Sh., Fournier J.-B. Relaxation dynamics of two-component fluid bilayer membranes. Eur. Phys. J. E, 2016, 39, P. 52.

8. Hackborn W.W. Asymmetric Stokes flow between parallel planes due to a rotlet. J. Fluid Mech., 1990, 218, P. 631–546.

9. Pozrikidis C. Computation of periodic Green’s functions of Stokes flow. J. Engineering Math., 1996, 30, P. 79–96.

10. Gugel Yu.V., Popov I.Yu., Popova S.L. Hydrotron: creep and slip. Fluid. Dyn. Res., 1996, 18(4), P. 199–210.

11. Popov I.Y., Blinova I.V., Kyz’yurova K.N. Stokes flow driven by a Stokeslet in a cone. Acta Mechanica, 2014, 225, P. 3115–3121.

12. Landau L. D., Lifshitz E. M. Fluid Mechanics, 2nd ed., Vol. 6. Pergamon Press, Oxford.: 1993. 532 p.

13. Ribe, N. M. Bending and stretching of thin viscous sheets. Journal of Fluid Mechanics, 2001, 433, P. 135–160.

14. Ribe, N. M.A general theory for the dynamics of thin viscous sheets. Journal of Fluid Mechanics, 2002, 457, P. 255–283.

15. Pfingstag, G., Audoly, B., Boudaoud, A. Linear and nonlinear stability of floating viscous sheets. Journal of Fluid Mechanics, 2011, 683, P. 112–148.

16. Timoshenko, S., Woinowsky-Krieger, S. Theory of plates and shells. McGraw-Hill, New York.: 1959, P. 595 p.


Review

For citations:


Melikhov I.F., Popov I.Y. Asymptotic analysis of thin viscous plate model. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):447-456. https://doi.org/10.17586/2220-8054-2018-9-4-447-456

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)