Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Methodology of analyzing the CdSe semiconductor quantum dots parameters

https://doi.org/10.17586/2220-8054-2018-9-4-464-467

Abstract

Direct methods (using a laser particle size analyzer) and indirect (from the analysis of spectral characteristics and differential normalized tunnel CVC) methods of CdSe QD size estimation allowed determination of the size (4 – 5 nm) and shown good qualitative and quantitative agreement of the results with an error of less than 10 %. It is concluded that the tunnel differential CVC analysis is an effective method for express measurement that can be used in quantum-size object investigations.

About the Authors

A. I. Mikhailov
Saratov State University
Russian Federation

Department of Nanoand Biomedical Technologies

Astrakhanskaya 83, Saratov, 410012



V. F. Kabanov
Saratov State University
Russian Federation

Department of Nanoand Biomedical Technologies

Astrakhanskaya 83, Saratov, 410012



E. G. Glukhovskoy
Saratov State University
Russian Federation

Department of Nanoand Biomedical Technologies

Astrakhanskaya 83, Saratov, 410012



M. I. Shishkin
Saratov State University
Russian Federation

Department of Nanoand Biomedical Technologies

Astrakhanskaya 83, Saratov, 410012



M. V. Gavrikov
Saratov State University
Russian Federation

Department of Nanoand Biomedical Technologies

Astrakhanskaya 83, Saratov, 410012



References

1. Karpovich I.A. Quantum engineering: self-assembled quantum dots. Soros educational journal, 2001, 7 (11), P. 102–108 (in Russian).

2. Karpov S.V., Mikushev S.V. Electron-hole excitations in CdSe quantum dots under strong and intermediate confinement conditions. Physics of the Solid State, 2010, 52 (8), P. 1750–1756.

3. Boichuk V.I., Leshko. R.Ya., Holskyi V.B., Karpyn D.S. Optical spectra of small CdS nanocrystals. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016, 19 (4), P. 384–390.

4. Vitukhnovskii A.G., Vashchenko, A.A., Lebedev V.S., et al. Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets. JETP Letters, 2014, 100 (2), P. 86–90.

5. Reiss P., Protiere M., Li L. Core/shell semiconductor nanocrystals. Small, 2009, 5 (2), P. 154–168.

6. Speranskaya E.S., Goftman V.V., Goryacheva I.Yu. Preparation of water soluble zinc-blende CdSe/ZnS quantum dots. Nanotechnologies in Russia, 2013, 8 (1–2), P. 129–135.

7. Kosolapova K.I., Al-Alwani A.J.K., Gorbachev I.A., Glukhovskoy E.G. Purification non-aqueous solution of quantum dots CdSe-CdS–ZnS from excess organic substance-stabilizer by use PE-HD membrane. J. Phys.: Conf. Ser., 2015, 643, P. 012084(1–5).

8. Troyan V.I., Pushkin M.A., Borman V.D., Tronin V.N. Physical basis of techniques for studying nanostructures and surface of solids, Ed. by V.D. Borman, MEPhI, Moscow, 2008, 260 p. (in Russian).

9. Demikhovskii V.Ya., Filatov D.O. Scanning probe microscopy study of electronic states in low-dimensional structures: learning guide on physicochemical fundamentals of nanotechnology, Nizhny Novgorod, 2007, 77 p. (in Russian).

10. Mikhailov A.I., Kabanov V.F., Zhukov N.D. Peculiarities of field electron emission from submicron protrusions on a rough InSb surface. Technical Physics Letters, 2015, 41 (11), P. 1065–1067.

11. Mikhailov A.I., Kabanov V.F., et al. Electronic properties of A2B6 quantum dots incorporated into Langmuir-Blodgett films. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81 (12), P. 1472–1475.

12. Mikhailov A.I., Kabanov V.F., Zhukov N.D., Glukhovskoy E.G. Features of the energy spectrum of quantum dots indium antimonide. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 596–599.


Review

For citations:


Mikhailov A.I., Kabanov V.F., Glukhovskoy E.G., Shishkin M.I., Gavrikov M.V. Methodology of analyzing the CdSe semiconductor quantum dots parameters. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):464-467. https://doi.org/10.17586/2220-8054-2018-9-4-464-467

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)