Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Testing Bell inequalities for multi-partite systems with frequency-encoded photonic qubits

https://doi.org/10.17586/2220-8054-2018-9-4-484-490

Abstract

Generalizing the problem of state nonlocality measurement, we suggest a multi-partite Bell test for multi-photon frequency-entangled quantum state in a quantum network. Each side of this network is equipped with a generalized detector, consisting of an electro-optic phase modulator, frequency filter and photo-counter. In our paper, we develop a theory of Bell nonlocality measurement in frequency domain, using generalized Svetlichny inequalities. Solving the optimization problem for detectors inputs, we obtain optimal measurement parameters which allow strong violation of considered inequalities. As a particular case, we consider bi- and tripartite cases for EPR, GHZ and Wigner states correspondingly.

About the Authors

V. O. Sheremetev
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



A. S. Rudenko
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



A. I. Trifanov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Bruner N., et al. Bell nonlocality. Review of Modern Physics, 2014, 86 (2), P. 419–478.

2. Horodecki R. Quantum entanglement. Reviews of Modern Physics, 2009, 81 (2), P. 865–942.

3. Gisin N. Bell’s inequality holds for all non-product states. Physics Letters A, 1991, 154 (5–6), P. 201–202.

4. Barret J. Nonsequential POVM’s on entangled mixed states do not always violate a Bell inequality. Physical Review A, 2002, 65 (4), 042302.

5. Masanes L., Liang Y.-C., Doherty A.C. All Bipartite Entangled States Display Some Hidden Nonlocality. Physical Review Letters, 2008, 100 (9), 090403.

6. Bell J.S. On the Einstein Podolsky Rosen Paradox. Physics, 1964, 1 (3), P. 195–200.

7. Clauser J.F., Horne M.A. Experimental consequences of objective local theories. Phys. Rev. D, 1974, 10, P. 526.

8. Clauser J.F., Horne M.A., Shimony A., Holt R.A. On the Einstein Podolsky Rosen Paradox. Physical Review Letters, 1969, 23 (15), P. 880.

9. Mermin N.D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Physical Review Letters, 1990, 65 (15), P. 1838.

10. Belinskii A., Klyshko D. Interference of light and Bell’s theorem. Physics-Uspekhi, 1993, 36 (8), P. 653.

11. Lodahl P., Mahmoodian S., Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 2015, 87 (2), P. 347.

12. Gisin N., et al. Quantum cryptography. Reviews of Modern Physics, 2002, 74 (1), P. 145–195.

13. Soorat R., Madhuri K., Vudayagiri A. Random number generator for cryptography. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 600–605.

14. Ivanova A.E., Chivilikhin S.A., Gleim A.V. The use of beam and fiber splitters in quantum random number generators based on vacuum fluctuations. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (2), P. 378–383.

15. Kues M., et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546, P. 622.

16. Zeilinger A., et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters, 2015, 115 (25), 250401.

17. Knill E., et al. Strong loophole-free test of local realism. Physical Review Letters, 2015, 115 (25), 250402.

18. Capmany J., Fernandez-Pousa C.R. Realization of Single-Photon Frequency-Domain Qubit Channels Using Phase Modulators. IEEE Photonics Journal, 2012, 4 (6), P. 2074–2084.

19. Lukens J.M., Lougovsky P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 2017, 4 (1), 010008.

20. Lu H.-H., et al. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. Physical Review Letters, 2018, 120 (3), 030502(6).

21. Olislager L., et al. Implementing two-photon interference in the frequency domain with electro-optic phase modulators. New Journal of Physics, 2012, 14, 043015.

22. Guo X., Mey Y., Du S. Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica, 2017, 4 (4), 040388.

23. Capmany J., Fernandez-Pousa C.R. Quantum modelling of electro-optic modulators. Laser Photonics Review, 2011, 5 (6), P. 750–772.

24. Miroshnichenko G.P., et al. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. Journal of the Optical Society of America B, 2017, 34 (6), 061177.

25. Svetlichny G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Physical Review D, 1987, 35 (10), 3066.

26. Seevinck M., Svetlichny G. Bell-Type Inequalities for Partial Separability in N-Particle Systems and Quantum Mechanical Violations. Physical Review Letters, 2002, 89 (6), 060401.


Review

For citations:


Sheremetev V.O., Rudenko A.S., Trifanov A.I. Testing Bell inequalities for multi-partite systems with frequency-encoded photonic qubits. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(4):484-490. https://doi.org/10.17586/2220-8054-2018-9-4-484-490

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)