Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Models of the energy landscape for an element of shakti spin ice

https://doi.org/10.17586/2220-8054-2018-9-6-711-715

Abstract

Micromagnetic calculations are compared with faster model calculations of interacting nanoscopic magnetic islands representing an element of a shakti spin ice lattice. Several pathways for transitions between equivalent ground states are studied. The model calculations describe the interaction between the islands either with the point dipole approximation, or with a dumbbell approximation where the distance between the two poles is optimized to match the micromagnetic results. The closest agreement in the energy of both local minima as well as transition state configurations where one macrospin has rotated by 90is obtained with a dumbbell model where the distance between the poles is ca. 20 % smaller than the island length.

About the Authors

U. B. Arnalds
Science Institute, University of Iceland
Ireland

107 Reykjav´ık



S. Y. Liashko
Science Institute, University of Iceland; ITMO University
Iceland

107 Reykjav´ık

49, St. Petersburg, 197101



P. F. Bessarab
Science Institute, University of Iceland; ITMO University
Ireland

107 Reykjav´ık

49, St. Petersburg, 197101



V. M. Uzdin
ITMO University; St. Petersburg State University
Russian Federation

49, St. Petersburg, 197101

St. Petersburg, 198504



H. Jonsson´
Faculty of Physical Sciences, University of Iceland; Dept. of Applied Physics, Aalto University
Ireland

107 Reykjav´ık

Espoo, FI-00076, Finland 



References

1. Wang R.F., Nisoli C., Freitas R.S., Li J., McConville W., Cooley B.J., Lund M.S., Samarth N., Leighton C., Crespi V.H. and Schiffer P. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature, 2006, 439, P. 303–306.

2. Nisoli C., Moessner R. and Schffer P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Rev. Mod. Phys., 2013, 85, P. 1473–1490.

3. Kapaklis V., Arnalds U.B., Farhan A., Chopdekar R.V., Balan A., Scholl A., Heyderman L.J. and Hjorvarsson B. Thermal fluctuations in¨ artificial spin ice. Nat. Nanotech., 2014, 9, P. 514–519.

4. Farhan A., Scholl A., Petersen C.F., Anghinolfi L., Wuth C., Dhuey S., Chopdekar R.V., Mellado P., Alava M.J. and van Dijken S. Thermodynamics of emergent magnetic charge screening in artificial spin ice. Nat. Commun., 2016, 7, P. 12635 (6 pp).

5. Arnalds U.B., Chico J., Stopfel H., Kapaklis V., Barenbold O., Verschuuren M.A., Wolff U., Neu V., Bergman A. and Hj¨ orvarsson B. A¨ new look on the two-dimensional Ising model: thermal artificial spins. New J. Phys., 2016, 18, P. 023008 (8 pp).

6. Chern G.-W., Morrison M.J. and Nisoli C. Degeneracy and Criticality from Emergent Frustration in Artificial Spin Ice. Phys. Rev. Lett., 2013, 111, P. 177201 (5 pp).

7. Morrison M.J., Nelson T.R. and Nisoli C. Unhappy vertices in artificial spin ice: New degeneracies from vertex frustration. New J. Phys., 2013, 15, P. 045009 (23 pp).

8. Mengotti E., Heyderman L.J., Rodr´ıguez F., Bisig A., Le Guyader L., Nolting F. and Braun H.-B. Building blocks of an artificial kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands. Phys. Rev. B, 2008, 78, P. 144402 (7 pp).

9. Gilbert I., Chern G.-W., Zhang S., O’Brien L., Fore B., Nisoli C. and Schiffer P. Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys., 2014, 10, P. 670–675.

10. Stopfel H., Ostman E., Chioar I.-A., Greving D., Arnalds U.B., Hase T.P.A, Stein A., Hj¨ orvarsson B. and Kapaklis V. Magnetic order and¨ energy-scale hierarchy in artificial spin-ice structures. Phys. Rev. B, 2018, 98, P. 014435 (8 pp).

11. Arnalds U.B., Farhan A., Chopdekar R.V., Kapaklis V., Balan A., Papaioannou E.T. Ahlberg M., Nolting F., Heyderman L.J. and Hjorvarsson B. Thermalized ground state of artificial kagome spin ice building blocks.¨ Appl. Phys. Lett., 2012, 101, P. 112404 (4 pp).

12. Farhan A., Derlet P.M., Kleibert A., Balan A., Chopdekar R.V., Wyss M., Anghinolfi L., Nolting F. and Heyderman L.J. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys., 2013, 9, P. 375–382.

13. Pohlit M., Porrati F., Huth M., Ohno Y., Ohno H. and Mu¨ller J. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics. J. Appl. Phys., 2015, 117(17), P. 17C746.

14. Pohlit M., Porrati F., Huth M., Ohno Y., Ohno H., and Mu¨ller J., Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice. J. Magn. Magn. Mater., 2016, 400, P. 206–212.

15. Chern G.-W., Mellado P. and Tchernyshyov O., Two-Stage Ordering of Spins in Dipolar Spin Ice on the Kagome Lattice. Phys. Rev. Lett., 2011, 106, P. 207202 (4 pp).

16. Castelnovo C., Moessner R., and Sondhi S.L. Magnetic monopoles in spin ice. Nature, 2008, 451, P. 42–45.

17. Moller G. and Moessner R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays.¨ Phys. Rev. B, 2009, 80, P. 140409 (4 pp).

18. Bessarab P.F., Uzdin V.M. and Jonsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to´ skyrmion and antivortex annihilation. Comp. Phys. Commun., 2015, 196, P. 335–347.

19. Bessarab P.F., Uzdin V.M. and Jonsson H. Harmonic transition state theory of thermal spin transitions.´ Phys. Rev. B, 2012, 85, P. 184409 (4 pp).

20. Bessarab P.F., Uzdin V.M. and Jonsson H. Potential energy surfaces and rates of spin transitions.´ Z. Phys. Chem., 2013, 227, P. 1543–1557.

21. Liashko S.Y., Uzdin V.M., Jonsson H. Thermal stability of magnetic states in submicron magnetic islands.´ Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 572–578.

22. Liashko S.Y., Jonsson H., Uzdin V.M. Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy.´ Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(6), P. 701–708.

23. Liashko S.Y., Jonsson H., Uzdin V.M. The effect of temperature and external field on transitions in elements of kagome spin ice.´ New J. Phys., 2017, 19, P. 113008 (8 pp).

24. Bessarab P.F., Uzdin V.M. Jonsson H. Size and shape dependence of thermal spin transitions in nanoislands.´ Phys. Rev. Lett., 2013, 110(2), P. 020604 (5 pp).

25. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F. and Van Waeyenberge B. The design and verification of MuMax3. AIP Advances, 2014, 4, P. 107133 (22 pp).

26. Mu¨ller G., Bessarab P.F., Vlasov S.M., Lux F., Kiselev N.S., Blu¨gel S., Uzdin V.M. and Jonsson H. Duplication, collapse and escape of´ magnetic skyrmions revealed using a systematic saddle point search method. Phys. Rev. Lett., 2018, 121, P. 197202 (5 pp).

27. Henkelman G. and Jonsson H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table.´ J. Chem. Phys., 2001, 115, P. 9657–9666.

28. Chill S.T., Welborn M., Terrell R., Zhang L., Berthet J.-C., Pedersen A., Jonsson H., and Henkelman G. EON: Software for long time´ simulations of atomic scale systems. Modelling Simul. Mater. Sci. Eng., 2014, 22, P. 055002 (16 pp).


Review

For citations:


Arnalds U.B., Liashko S.Y., Bessarab P.F., Uzdin V.M., Jonsson´ H. Models of the energy landscape for an element of shakti spin ice. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(6):711–715. https://doi.org/10.17586/2220-8054-2018-9-6-711-715

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)